
Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 1 of 49

LeArning and robuSt decision SupporT systems for agile
mANufacTuring environments

 Project Acronym:

ASSISTANT

Grant agreement no: 101000165

Deliverable
no. and title

D6.2 – Data Fabric Architecture Report

Work package WP 6 Secure and intelligent data fabric

Task T 6.2 Data fabric architecture design

Lead contractor Institut Mines-Telecom (IMT)

Alexandre Dolgui, mailto: alexandre.dolgui@imt-atlantique.fr

Deliverable
responsible

FLM - Flanders Make
Johan Van Noten, johan.vannoten@flandersmake.be

Version number v1.0

Date 29/10/2021

Status Release Candidate

Dissemination level Public (PU)

Copyright: ASSISTANT Project Consortium, 2020

Ref. Ares(2021)6684699 - 29/10/2021

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 2 of 49

Authors

Partici
pant
no.

Part.
short
name

Author name Chapter(s)

4 FLM Bart Meyers
Johan Van Noten

All not mentioned below

6 BITI P-O Östberg 3.2
8 INTRA Vangelis Xanthakis 3.3

All All All data fabric users Per user sections of 4

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 3 of 49

Document History

Version Date Author name Reason
v0.1 2020-12-04 Félicien Barhebwa-

Mushamuka
Initial Template

v0.2 2021-09-01 FLM Initial D6.2 document breakdown
v0.4 2021-09-27 BiTi, Intra, UCC,

FLM
Integrated draft for review by users.

v0.5 2021-09-29 BiTi, Intra, UCC,
FLM

Integrated BiTi and Intra for review by users.

v0.6 2021-10-08 All Integrated users’ input. Refined content.
Ready for review by WP collaborators.

v0.7 2021-10-15 BiTi, Intra, UCC,
FLM

Final rework before internal review

v0.8 2021-10-22 UCC Internal Review
v0.9 2021-10-26 BiTi, Intra, FLM Final integration & rework
v1.0 2021-10-29 FLM Release for publication

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 4 of 49

Publishable Executive Summary

In this document, the contributors on WP6 propose the architecture of the ASSISTANT Data
Fabric. In addition to usual Data Fabric concerns, the ASSISTANT Data Fabric is structured
specifically for handling the concerns of adaptive manufacturing scenarios.

The Data Fabric is only a part of the entire infrastructure for ASSISTANT. The following
descriptions are focused on that Data Fabric aspect within the overall architecture. Four zones
are distinguished that interact with the Data Fabric.

 First, there is the Interactive Consumer zone, where a user interactively investigates
the available historical information. This data scientist looks for new information in
the available data, tries to get analytics questions answered, and restructures data so
that it can be fed into artificial intelligence model training. Among the four zones, this
is the only one where a user (typically a data scientist) will interact directly with the
Data Fabric.

 Next, the Automated Consumer zone, where all applications, dashboards, digital
twins, AI models, etc. are hosted for runtime. Here the end-users do not directly
interact with the Data Fabric, but instead interact with the applications that are
hosted in this zone. It are the applications that interact with the Data Fabric..

 The third zone, the Operational Technology (OT) zone, is where a significant part of
the data originates from and what WP5 will interact with most extensively.

 Finally, the Data Fabric for ASSISTANT does not necessarily cover all legacy compute
and data infrastructure of the company. The ones that are necessary for the project,
but not covered within the ASSISTANT Data Fabric, belong to the External Resources
zone. Links or imports can be organized where required.

The most important aspect of the Data Fabric is how it organizes data and provides users access
to exploring, reading, or writing such data. It is essential to make a distinction between
historical data and live data. The latter is streamed directly between the producers and
consumers of the live data, e.g., a device producing data in the OT zone and an application in
the Automated Consumer zone that consumes this live data. The former is persistently stored
first and only consumed thereafter, e.g., by a data scientist training a model. This does not
mean that historical data is old data. Also, very recent contemporary data is considered part
of this. Because of this difference in nature, the Data Fabric exposes both data kinds to the
users through different Data Access interfaces. On top of these technical interfaces, the Data
Fabric is also concerned with providing a suitable data structure and enhancing the
transparency of the information and the interoperability between the different work packages
(as described in deliverable D2.1). The Knowledge Graph provides this global view on data and
its structure.

Finally, multiple instantiations of the Data Fabric will be created by each of its users. There
are generic work packages WP3, 4, 5; industrial users AC, PSA, SE; and the demonstrator WP7.
It is important to validate whether the proposed architecture fits their needs. Therefore, all
users describe in this deliverable how they currently foresee interacting with the Data Fabric.
As several of the project’s contributions are precisely on this topic of interaction, it is expected
that the vision on the Data Fabric internally and externally (from those who interact) will evolve
during the project when new insights mature the Data Fabric architecture. Also WP2 will
continuously check whether the architecture adheres to their concerns.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 5 of 49

Table of contents

1. Introduction ... 9

1.1 Objective and scope of the document .. 9
1.2 Structure of the deliverable report .. 9

2. Logical architecture .. 10

2.1 The Data Fabric and its context... 10
2.2 The scope of the Data Fabric .. 11
2.3 Interactions between the Consumer zones and the Data Fabric 12

2.3.1 Knowledge Graph ... 12
2.3.2 Data access .. 13
2.3.3 Generic interactions .. 14

2.4 Data Fabric instantiation ... 14
2.5 Governance .. 15

2.5.1 Dependency and version management ... 15
2.5.2 Issue management .. 17

2.6 Cloud or Edge Deployment ... 17
2.7 Security ... 18

3. Data Fabric architecture ... 20

3.1 The Knowledge Graph .. 20
3.1.1 Incremental Knowledge Graph creation ... 20
3.1.2 Generic Knowledge Graph structure ... 21
3.1.3 Knowledge Graph composition .. 23
3.1.4 The Knowledge Graph’s link with data: direct, virtual, or referencing 24
3.1.5 Historical versus Live Knowledge Graph ... 25
3.1.6 Technical interfaces .. 26

3.2 Storage architecture .. 28
3.2.1 Multi-layer service structure .. 29
3.2.2 Data storage ... 30
3.2.3 Data services (search, queries, and access) .. 32
3.2.4 Compute and processing ... 34
3.2.5 Control Plane .. 34

3.3 Live streaming architecture ... 35
3.3.1 Streaming infrastructure (Streamhandler platform) 35

3.3.1.1 Short term historic db ... 36
3.3.2 Data Gateway & Data Access components .. 36

3.3.2.1 Data Gateway ... 37
3.3.2.2 Data Access ... 37

4. User view ... 38

4.1 WP3 – Process Planning ... 38
4.2 WP4 – Production Planning & Scheduling .. 40

4.2.1 WP4’s interactions from Simulation perspective ... 40
4.2.2 WP4’s interactions from a Planning perspective ... 41
4.2.3 WP4’s interactions from model acquisition and scheduling perspective................ 43

4.3 WP5 – RT control & actuation ... 44
4.4 Atlas Copco .. 45

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 6 of 49

4.5 PSA – Stellantis .. 46
4.6 Siemens Energy .. 46
4.7 WP 7 – Demonstrator.. 47

5. Conclusions ... 49

6. Appendix.. 49

6.1 Abbreviations .. 49

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 7 of 49

List of figures

Figure 1: Logical architecture .. 10
Figure 2: Interactions between the Consumer zones and the Data Fabric 12
Figure 3: Version dependencies within an example SE Data Fabric instance 16
Figure 4: Position of the Knowledge Graph in the Data Fabric (Green area) 20
Figure 5: Minimalistic generic Knowledge Graph structure .. 21
Figure 6: Domain models - generic vs specific ... 23
Figure 7: Referencing Knowledge Graph (references in red, external links in blue) 25
Figure 8: Knowledge Graph interaction example for a deployment with Ontop. 28
Figure 9: Position of historical data in the storage architecture of the Data Fabric (Green area) 28
Figure 10: Conceptual overview: Layered service-oriented storage architecture for the Data Fabric .. 29
Figure 11: All storage architecture data items are stored with associated metadata documents. Example
data illustrating tags with details of the data origin and provenance. 31
Figure 12: Example data fabric workflow External equipment and systems store data in the data fabric.
Metadata tags are scanned upon storage and plug-ins are triggered based on preconfigured rules to
perform light-weight processing of data, e.g., data curation. Once stored, data is made available to
external tools through service interfaces. Data fabric clients, e.g., digital twins, make use of the data
and may further interact with the data fabric systems as part of their processes. 33
Figure 13: Detailed workflow: plug-in may be reactively triggered based on detection of preconfigured
metadata tags. Plug-ins may operate on metadata or data, and may update, delete, or create new data
items or metadata tags as part of their processes. ... 34
Figure 14: Position of Live data in the Data Fabric (Green area) ... 35
Figure 15: Streamhandler platform centrally in the Live streaming zone 36
Figure 16: Data producers and data consumers ... 37
Figure 17: Scope of interest to WP3 (shaded area out of scope) .. 38
Figure 18: Scope of interest to WP4 (shaded area out of scope) .. 40
Figure 19: Scope of interest to WP5 (no shaded area -> full system in scope) 44

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 8 of 49

List of tables

Table 1: Overview of KG technical implementations ... 26
Table 2: Abbreviations .. 49

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 9 of 49

1. Introduction

1.1 Objective and scope of the document

This document defines a reference architecture for a Data Fabric tailored for AI in
manufacturing. Several components from this Data Fabric architecture are highlighted, since
ASSISTANT intends to go beyond the state-of-the-art on these components. Other components
can be reused from state-of-the-art or state-of-the-practice. The architecture is intended to
be used and deployed in several ways, using several existing platforms, to be generically usable
in the manufacturing domain. It is not intended to limit itself to particular interfaces and
protocols.

Next to describing the reference architecture itself, this deliverable briefly describes the
instantiation of the reference architecture within the ASSISTANT project, for which an
implementation will be created in Task 6.3. Within the ASSISTANT project, we identify seven
users of the Data Fabric: WP3, WP4, WP5, industrial use cases of PSA, AC, SE, and the flexible
assembly line demonstrator created in WP7.

This deliverable describes the first milestone of the architecture based on current insights and
requirements. During the project insights as well as requirements are expected to evolve. After
being validated and tested throughout the project, the final version of the architecture will be
available.

1.2 Structure of the deliverable report

Section 2 describes the reference architecture at the logical level. It describes the main
components of the Data Fabric, its context, and interactions. Furthermore, it discusses how to
instantiate the architecture for a particular use, deployment, and security context.

Section 3 describes the architecture in detail, focusing on three main parts of the Data Fabric
that enable the project’s research:

 The knowledge graph and its interface to the existing data, information and
knowledge that is served by the Data Fabric;

 The historical storage architecture that manages historical data, information and
knowledge;

 The live streaming architecture that handles streaming data from the operational
technology.

Section 4 describes the mapping of each of the users’ needs to the reference architecture.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 10 of 49

2. Logical architecture

Figure 1: Logical architecture

2.1 The Data Fabric and its context

The logical architecture visualized in Figure 1 distinguishes two main parts, separated by a
dashed line:

 Historical (= stored data): The upper part of Figure 1 is concerned with historical
data, data at rest. This is where all historical data is ingested from OT devices and
organizational systems such as MES or ERP. Data can also be stored by users or
applications in both Consumer zones. Such data covers measurements, as well as
stored models, product type information, and production knowledge.

 Live (= streamed data): The lower part of Figure 1 is about live data, data on the
move. This is where field data originates, is collected and is processed in a real-time
fashion.

Historical data does not imply “old data”. Historical data also covers very recently collected
data, becoming available once it is ingested in the Historical part of the Data Fabric. As opposed
to “Live data” it is not consumed as a stream of data, but instead it is stored first and queried
later.

In addition, the figure shows four zones:

 Centrally, the Data Fabric is the focus of this deliverable and is discussed in detail in
the following sections.

 The OT zone contains the “operational technology”, being the devices on the factory
floor. This zone can contain machines, operator interfaces, and inspection stations,
among others. Those devices are the main sources of data used in the project.

 The External Resources are mentioned explicitly on the figure since the Data Fabric is
not intended to hold a copy of all of a company’s data. Data sources, such as MES
systems, may have their own data storage, either imported partially into the Data
Fabric or linked to it through APIs. Also, some data might be obtained from live
simulations. Those simulations are not hosted on the Data Fabric’s computing
resources but instead on external resources and accessed by the Data Fabric.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 11 of 49

 The Interactive Consumer zone covers all kinds of interactive data analytics,
typically performed by data science users. This means ad-hoc interactive investigation
of the data (learning what is available, drawing first conclusions, etc) as well as the
development and execution of analysis algorithms, simulations, AI-trainings, etc.
In the context of the project, the Interactive Consumer zone is interacting exclusively
with the Historical part of the Data Fabric.

 The Automated Consumer zone covers all kinds of automated processes that process
data, and potentially draw conclusions from them or even react to them. A first kind
of automated processes periodically react to historical data and are typically called
batch processes. Other processes can be live dashboards showing real-time production
statistics, or streaming analytics applications monitoring the OT zone caring for
production optimization or anomaly detection. All of those automated processes are
typically constructed in and deployed from the Interactive Consumption zone.

2.2 The scope of the Data Fabric

The term “Data Fabric” has a very broad definition with lots of aspects, as explained in D6.1.
As suggested in deliverable D2.1 section 3.6.3., the responsibilities of each component in the
ASSISTANT context needs to be clearly described. Together with the previous section, this
section clarifies the responsibility of the Data Fabric.

In general terms, the Data Fabric covers all data infrastructure as highlighted in Figure 1. This
implies that the Data Fabric covers data storage, communication, and transformation required
to enable the OT and Consumer Zones’ functionality from a live as well as a historical point of
view. Moreover, the Data Fabric is itself a client to the external resources. The zones indicated
in yellow in Figure 1 are outside of the Data Fabric’s responsibility.

All work packages also need computational resources. This is the case for the digital twins,
their simulations as well as the near-real-time activities required by WP5 (see deliverable D5.1
requirement R6.3). Such computational services can be separated into two parts:

 Inside the Data Fabric: The Data Fabric offers appropriate computational resources to
perform data ingestion between live and historical zones and to care for information
delivery and caching.

 Outside the Data Fabric: The Data Fabric does not provide computing resources for
hosting case-specific computations, e.g., computing resources to train an AI model on
historical data or to allow the runtime version of such model to react to incoming OT
data, computing resources to perform simulations. Such computing resources need to
be hosted in a Consumer zone and so outside the Data Fabric scope.

Moreover, as clarified in deliverable D6.1, it is not the project’s ambition to improve the state-
of-the-art of Data Fabrics in all their aspects. Instead, the Data Fabric activities for ASSISTANT
focus on those aspects specific to a Data Fabric suitable for “AI in manufacturing”. Therefore,
the generic Data Fabric aspects can be separated in three categories:

 We will ignore those aspects that Data Fabrics often support but that are not
considered relevant to this project's scope because neither the research nor the
applications need this functionality.

 We will apply the current state-of-the-practice concerning Data Fabrics for the
practical enabling of the project’s digital twins and the project’s research. For this
purpose, the project uses standard technology covering topics such as:

o How to host an ETL process that transforms a part of the historical data in a
new and more usable (=curated) format?

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 12 of 49

o How to realize the ingestion of OT data towards historical databases? This is for
instance one of the main roles for Intrasoft’s StreamHandler (see section 3.3).

 We will focus on the following key contributions in ASSISTANT concerning the Data
Fabric for adaptive manufacturing:

o Interaction mechanism between the Consumer zones and the Data Fabric’s
Knowledge Graph and Data Access (see section 2.3);

o How to formalize knowledge into a Knowledge Graph, especially knowledge
concerning uncertainty (see section 3.1);

o Propose a generic KG structure on which the project partners can build their
KG (see section 3.1);

o A data storage architecture including simulation- an optimization-based tools
for its intelligent management and orchestration (see section 3.2);

2.3 Interactions between the Consumer zones and the Data Fabric

Figure 2: Interactions between the Consumer zones and the Data Fabric

Figure 2 repeats the main Data Fabric interfaces towards the Consumer zones and their
interactions, already depicted in Figure 1. These are the Consumer interactions that drive the
project’s contributions on the Data Fabric state-of-the-art. As indicated in deliverable D2.1, it
is important to provide to the user a clear and transparent view on the system. In the case of
the Data Fabric, this transparency mainly applies to the interfaces accessed by the Interactive
Consumer zone and to the role the Knowledge graph plays in it.

The internal structure of the Data Fabric is explained in more detail in chapter 0, but the main
parts are motivated and introduced briefly here.

2.3.1 Knowledge Graph

 What is the Knowledge Graph (KG)?
o It provides an overview of all data, information and knowledge that is available

in the Data Fabric.
o It mainly focuses on the descriptive part of the data (the metadata, the types,

concepts and the links between them, additional knowledge, etc.)
 Interactions from the Interactive Consumer zone

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 13 of 49

o Explore – The user interactively explores the KG. Such exploration is typically
navigation, visualization, etc.

o Query – The user retrieves parts of the KG in order to reprocess it for his own
needs.
Example: The KG may model products, processes and process steps. The user
might want to query these elements from the KG and use them in an
optimization model.

o Store – The user adds new knowledge into the KG. This knowledge can have two
natures without a hard line to distinguish both:

 A user can add new concepts, attributes or relationships. This changes
the structure of the KG: after the addition, new kinds of information
can be captured in individuals of those new concepts (being instances,
occurrences of these concepts).
Example: The user wants to go and define a new attribute “Tolerance”
to a previously existing concept “PhysicalDimensions”. From then on,
the user can capture new values for Tolerance on each
PhysicalDimension.

 A user can add new individuals.
Example: The user has performed a data analysis experiment and found
a correlation between two parameters. The user stores this new
knowledge into the KG. It then becomes available for future
Explore/Query interactions.

o Deploy – When adding new concepts, attributes or relationships, a user may
also need to specify how these link to specific data items on the Data Access
interfaces (in case of a Virtual KG, see 3.1.4).

 Interactions from the Automated Consumer zone
o Query – Applications in this zone know which information they need to retrieve.

Not all of them will know where to find that information directly in the Data
Fabric interface. They can query the KG in order to obtain the required
metadata.
Example: an application needs live data for the temperature of the inlet pump,
but it does not know where to look for that information on that particular OT
environment. It asks the KG for the correct Data Access location for this
particular data stream (e.g. a specific Kafka topic). Once known, it starts
consuming the desired data from the Data Access.

2.3.2 Data access

 What is Data Access?
o It provides technical access to all data available in the Data Fabric to the

extent of the user’s access rights.
o The precise access method can depend on the nature of the data the user is

looking for.
 Interactions from the Interactive Consumer zone

o Query – The user formulates a query for a specific subset of the Data Fabric’s
data.
Example: Get the temperature measurements for sensor X between dates Y and
Z. Get the ids of the machines involved in the process steps for product X.

o Store – The user can store additional data into the Data Fabric. This is typically
data computed by the user, e.g. in the context of a data science experiment.

 Interactions from the Automated Consumer zone
o Consume / Query – Similarly to the Interactive Consumer zone, the applications

can obtain their data here. Whereas the Interactive Consumer zone is typically
requesting historical data, the Automated Consumer zone is usually (but not

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 14 of 49

exclusively) interested in live data. Therefore, the queries can be formulated
as continuous queries or connections to incoming data streams, as well as
traditional queries over short-term historical data.

o Produce – A process in the Automated Consumer zone typically does not store
additional data but rather sends output data as a continuous stream for
consumption by other participants.

2.3.3 Generic interactions

Some generic interactions are not further detailed as we will implement these according to
state-of-the-practice:

 “Deploy” interactions: When users create additional functionality, they need to deploy
it to a computational platform. Such contributed functionality comes in various kinds:

o An automation, such as an improved ETL process (a user’s specific ingestion
scripts)

o A user-facing functionality, such as a dashboard for visualizing occurring
production anomalies

o A batch process periodically recalculating optimal planning for the next day of
production.

Some of these contributions need to be hosted on the Data Fabric. Others become
hosted in the Automated Consumer zone or on some External Resources. In all cases,
this is a kind of deployment.

 “Manage” interactions: Like any IT infrastructure, the Data Fabric also has
management interfaces to handle security, user access, resource scalability, etc.

In conclusion, although Deploy and Manage are essential for the Data Fabric users, they do not
match with any of the research contributions of the project. Therefore, these interactions are
handled using default state-of-the-practice techniques and are not further detailed in this
document unless required.

2.4 Data Fabric instantiation

This document describes the architecture of the Data Fabric. Such an architecture is a template
of what a Data Fabric for ASSISTANT should look like. It does not mean that there should only
be one single Data Fabric instance (= concrete installation) in use within the project, nor does
it mean that all Data Fabric instances should be identical. Every user can deploy his instance.
Such a decision takes into account several trade-offs:

 A single instance allows for better collaboration between its users because a single
Knowledge Graph and Data Access provide access to all available knowledge and
information.

 Separating instances allows for better data separation if the industrial partners of
ASSISTANT need to store company-specific data. From a corporate governance point of
view, the industrial partners will never allow confidential data inside a proof-of-
concept implementation hosted outside of their control.

 Separating instances also allows for more independent evolution. For example, version
evolutions or structural experiments can be performed more easily if they do not
disturb any users using the same Data Fabric instance.

For good governance of the project, several instances of the Data Fabric architecture will be
maintained by their respective users. The exact split needs to be decided during the project
execution, but it is expected that the project ends up with the following instances:

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 15 of 49

 Research instance: covers the needs of WP6, allows for several experiments without
disturbing users.

 Development instance: covers the needs of WP2, WP3, WP4, WP5.
o It is advantageous that this is a single instance for the four work packages since

it allows to research the relationships between the data models and the work
packages.

o During their individual development, work packages may still create a private
instance.

o It is essential to:
 Maintain good governance for the different WPs to evolve their

contributions smoothly, e.g. when a new version of WP3’s domain
model is deployed (see section 2.5).

 Clarify which data will be put inside this common Data Fabric instance.
For example, if WP3 desires working with confidential company data,
such data should not be exposed to WP5. It is up to these work packages
to check which data they can collectively host inside their common Data
Fabric.

 User instance: each industrial partner can create a separate Data Fabric instance for
their internal validation work. In this case, the industrial partner can choose to host
this instance in a trusted environment and to fill it with confidential data.

 Demo instance: covers the needs of WP7. This is used for building the overall results in
a demonstrable environment.

2.5 Governance

2.5.1 Dependency and version management

Throughout the project, the Data Fabric will evolve while it is used by several stakeholders
simultaneously. In order to manage this, good governance needs to be defined. Although
dependency and version management are not the only aspects of governance, they are currently
perceived as the biggest integration risks because partners will evolve at different speeds,
while still having the desire to integrate. Applying the rules below avoids significant versioning
conflicts and inefficiencies.
The explanation below uses concepts that are introduced in section 3 only. In order to
understand the details, the reader might consider to read that section first.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 16 of 49

Figure 3: Version dependencies within an example SE Data Fabric instance

Figure 3 graphically represents the different entities involved in realizing the Data Fabric
instance for one of the use cases, the SE industrial use case. The dependencies in the figure
are for clarification purposes only, and do not correspond to the (still to be created) real
artifacts. The red arrows indicate dependency relationships. Reading through the “Generic”
column of the figure, one can conclude:

 The Generic KG interfaces currently carry a version number v1.7.
 The Generic KG concepts are defined in an ontology with version number v2.
 The Generic Data Interfaces are at v1.5
 The Generic Data schemes are at v1.3.
 The Generic components do not have their own individuals, data mappings, data

references or data, as these are application-specific. (dark cells)
Next, work packages or users bring their own Data Fabric elements. As an example for WP3:

 WP3 does not change anything to the technical interfaces of the KG or of the Data.
Those are centrally, generically defined and are therefore WP6 ownership. WP3 reuses
these. (dark cells)

 WP3 extends the generic KG (carrying v2.2) definition with concepts and relationships
specific to product planning, depending on v2.2 of the Generic KG definition. In the
figure, WP3 itself currently assigns v2.1 as a version for these extended specific KG
concepts. This extension mechanism is explained in more detail in section 3.1.3.

 WP3 also defines what the schemes should be of the data that represent the planning
concepts. The figure shows v1.1 for these schemes. Also these schemes might relate to
the generic schemes that currently carry v1.3.

 WP3, therefore also has to define the Data Mappings and potentially Data References it
wants to make between the KG definition and the corresponding data below on the
figure. These mappings and references make use of the data interfaces and schemes.

Similarly, WP4 depends on WP3’s KG definition if WP4 desires to use the product planning info
in its own scheduling algorithms. Likewise, the industrial use case of Siemens Energy (SE)

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 17 of 49

depends on WP3’s KG definition and WP4’s if they want to experiment with those WP’s
contributions. The SE case does not handle real-time functionality, so the SE Data Fabric
instance has no dependencies on WP5, hence the light blue column for WP5.

The data itself is provided by SE, as shown on the lowest row of the figure. Although WP6, WP3
and WP4 define what the data should look like, SE provides the underlying data for the SE use
case.

The example illustrates that the Data Fabric instances and their dependencies become
unmanageable if every contributor modifies every aspect of the ecosystem without taking the
dependencies into account. This problem is very close to what is encountered with dependency
management in software development or in any service-oriented architecture system.

The following rules will be followed to improve the manageability:

 Strict version & release management. Modifications to all aspects of the Data Fabric
(except for pure data) are to be:

o versioned and made accessible in the central repository for the project
o released according to the following convention:

 Major version number: can break dependencies
 Minor version number: never breaks dependencies, just adds functions /

attributes / abilities
 Releases that depend on other releases carry the same major version

number (although their minor part can vary independently).
 Synchronized upgrades that are approved by a committee happen on a per instance

basis. Every Data Fabric instance is allowed to make use of any desired existing releases
of the elements it depends on as long as they are mutually consistent.

 Evolution of ontology definitions or schema evolutions will cause impact on the
mappings, references and underlying data structure. It will be the responsibility of the
Data Fabric instance owner to adjust these accordingly. The project does not take care
of any form of automatic data structure evolution.

2.5.2 Issue management

Next to version management, the Data Fabric also needs issue management. This allows the
Data Fabric collaborators as well as its users to report issues and follow them up.
Issues need to be submitted on the appropriate topics:

 WP6 - The generic Data Fabric issues
 WPx – Issues with the contributions of the specific WP

(e.g., the model of WP4)
 InstanceX – Issues with a specific instance of the Data Fabric

(e.g., the WP7 Data Fabric instance)
Each of those issue topics gets a responsible assigned who will delegate the issue if required.

2.6 Cloud or Edge Deployment

The logical architecture does not make any statements on the deployment location of the
different zones. Naturally, our production scenarios' OT zone is on premises since it contains
the physical machinery itself. Similarly, the historical part of the Data Fabric typically has a
connotation of cloud deployment since more and more companies make use of the flexibility
and reliability that cloud solutions offer today.
The live part of the Data Fabric and the Automated Consumer zone are often positioned close
to the OT zone (i.e. on the edge) since some of their functions might require close-to-real-time

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 18 of 49

and highly reliable operation. On the other hand, the live part of the Data Fabric and the
Automated Consumer zone can also be hosted in a cloud environment. In general, both are the
most obvious candidates for a distributed physical deployment: one live Data Fabric and live
Automated Consumer zone on each edge combined with one or several cloud deployments,
each performing their function at the most appropriate location.
The project’s architectural view does not impose any of these deployments. Each use case or
digital twin in this project may decide a deployment that suites them best.

2.7 Security

Security is an essential concern for any IT system, and as discussed in deliverable D2.1 section
3.5, the ASSISTANT project respects security requirements throughout the architecture. All
zones visualized in Figure 1 are vulnerable to security risks. Applications in the Consumer zones
and installations in the OT zones can be attacked or leak sensitive information. In the context
of this Data Fabric architecture document, we consider only the risks that directly impact the
Data Fabric. Indirect threats such as information leaks using a compromised OT zone are not
considered but left as the responsibility of those zones. Those indirect threats will be handled
in the general project architecture of WP2.

Security is a complex combination of many aspects and the final level of a system’s security is
as low as that of its weakest part. Therefore a thorough threat analysis (using FMEA, FTA, and
other risk management processes) would be performed on all systems intended for production
use. The Data Fabric is intended to run as a proof-of-concept only within this project, so the
threat analysis and security aspects are performed less thoroughly. Most of the security
implementation depends on the implementation technologies chosen for the individual digital
twins and demos.

The following security aspects are to be covered in the Data Fabric in order to obtain a basic
level of security:

 Authentication:
o Access to the Knowledge Graph and Data Access interfaces of the Data Fabric is

only possible after successful authentication.
o Deliverable D2.1 section 3.5.2 advises a central authentication system (CAS) for

this purpose. The Data Fabric will play the role of a CAS client for those
deployments that have a CAS server available.

 Authorization:
o Depending on the authenticated user’s role, some or all of the information will

be accessible for reading or writing. Deliverable D2.1 section 3.5.1 suggested
the implementation of a role-based access control (RBAC) mechanism.

o For the Data Fabric, this RBAC is limited to the Knowledge Graph and Data
Access APIs. Its granularity depends on the individual services offered during
the project but will be reduced to essentials since the precise role assignments
are not the project’s focus.

 Confidentiality:
o Communication between the users and the Data Fabric needs to be protected

against eavesdropping or other non-authorized access as described in
deliverable D2.1 section 3.5.3.

o The Data Fabric establishes state-of-the-practice communication channel
encryption (TLS/SSL) to cover this risk for data in transit. Additionally, the data
stored in the Data Fabric will be encrypted at rest using state-of-the-practice
algorithms (AES).

 Privacy:

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 19 of 49

o Closely linked to confidentiality is the concept of privacy. Since the project
covers GDPR-sensitive data, this data needs to be anonymized to the level that
it cannot be traced back to individual persons. The Data Fabric itself does not
implement any data anonymization techniques and supposes that the project
partners anonymize the data before storing the data into the Data Fabric.

o On the other hand, as suggested by deliverable D2.1 section 3.6.5, the Data
Fabric needs to watch privacy in the audit or usage log data generated
internally.

Some additional security aspects are of lower importance to the proof-of-concept level of the
Data Fabric in this project:

 Integrity: Protecting the data against manipulation of its content.
 Non-repudiation: Making sure that the sender of the data has proof of delivery.
 Availability: Avoiding potential loss of data of unavailability of (parts of) the Data

Fabric.
Those aspects would only be essential for production purposes.

Because of its status as proof-of-concept Data Fabric, the project partners will not trust the
Data Fabric with any sensitive data and stick to the following rules:

 Deploy the Data Fabric in a trusted environment (perimeter security)
 Only allow access to that perimeter by trusted personnel
 Ensure that all data stored into the Data Fabric is free of privacy or Intellectual

Property concerns in those cases where the perimeter security does not satisfy the
company’s security level.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 20 of 49

3. Data Fabric architecture

This section describes the architecture of the Data Fabric in more detail by highlighting its
different parts:

 3.1 The Knowledge Graph
 3.2 Storage architecture
 3.3 Live streaming architecture

This refines the distribution of responsibility suggested in deliverable D2.1 section 3.6.3 to the
different aspects within the Data Fabric architecture.

3.1 The Knowledge Graph

Figure 4: Position of the Knowledge Graph in the Data Fabric (Green area)

The green area within the Data Fabric zone in Figure 4 marks the Knowledge Graph and its
interactions.

The following user stories are used throughout the section to guide the motivation:

 User story KG1: As an AI expert in the Interactive Consumer zone, I can interact with
the Knowledge Graph to create an AI model using historical data and exploit it later on
the Automated Consumer zone.

 User story KG2: As a domain modeler, I can create a domain-specific Knowledge Graph
to make all relevant data, information, and knowledge of my domain accessible.

Many more user stories can be defined and refined, but it is not intended to be complete here.
Instead, they serve as clarifications and motivations.

3.1.1 Incremental Knowledge Graph creation

Building a Knowledge Graph is an incremental process. Each company owns, stores and streams
a lot of data, information and knowledge. It is unrealistic to go and include all of this data in
the KG at once. Instead, the KG is to be built up incrementally. This way, the KG slowly covers
more and more of the company’s knowledge.
Often, this build-up is a manual process. Automated cataloguing systems exist, are constantly
evolving, and can certainly take away a significant part of the manual burden. However, they

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 21 of 49

are limited to cataloguing information that is available in plain data (e.g., databases and
documents). A KG can be much broader than that. It can contain knowledge produced in data
science experiments. For example, a data scientist can store his experiment for future
reproduction and store traceability links to the data on which he based his conclusions.
Furthermore, he can store a calculation for a derived attribute that he computed in the
experiment, together with this derived attribute's uncertainty and validity frame. Such
information will not be catalogued automatically from existing data but will be contributed
through the “Store” interaction on the historical KG.
One of the research contributions in ASSISTANT concerns that latter aspect precisely: how to
express the knowledge concerning experiments and uncertainty in a helpful way in the KG, how
does it evolve?

3.1.2 Generic Knowledge Graph structure

The project proposes a generic structure of a KG to:
 assist Data Fabric users to build their own KG as an extension to this generic structure

(this composition mechanism is explained in section 3.1.3);
 assert the compatibility of the user-specific KG with the Data Fabric architecture;
 provide a means of standardization of generic concepts in the domain.

Figure 5: Minimalistic generic Knowledge Graph structure

Figure 5 shows an illustrative (but minimalistic) example of the generic Knowledge Graph
structure as a UML class diagram. Without going into the details of the semantics of a UML class
diagram, some examples of how to read the figure:

 A Machine is a kind of Resource, which in turn a kind of Asset. (hollow arrowhead)
 A Process owns Process Steps. (diamond + arrow)
 An OptimalPlanning references one or more Resources and considers these as its

“engagedResources”. (arrow + relationship name)
One of the research goals of ASSISTANT is to finalize the generic structure so that it is
compatible with the needs of ASSISTANT. The project draws inspiration from existing standards
and ontologies.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 22 of 49

As a refinement of User story KG1, the following user stories are typically followed in succession
(in multiple iterations):

 User story KG1.1: As an AI expert in the Interactive Consumer zone, I can use the
Knowledge Graph to find historical data to perform data analytics that extract
features and insights, which I can store back into the Knowledge Graph.

 User story KG1.2: As an AI expert in the Interactive Consumer zone, I can use the
Knowledge Graph to find the historical data of a given property so that I can train an
AI model.

 User story KG1.3: As an AI expert in the Interactive Consumer zone, I can use the
Knowledge Graph to find the suitable input parameter values (possibly defined by User
story KG1.1) of my AI model from the Knowledge Graph so that I can execute my AI
model (inferencing).

 User story KG1.4: As an AI expert in the Interactive Consumer zone, I can explore the
knowledge graph so that I can learn what data, information and knowledge exists.

The generic structure consists of three connected parts, shown in Figure 5:

 Manufacturing concepts: this part contains a generic ontology for manufacturing with
connected concepts like Asset, Resource, Machine, Process , etc. It provides semantics
and structure to all information in an organization. Using the hollow arrow inheritance
notation, it indicates that Machines are a kind of Resource and Resources are a kind of
Asset. When exploring and querying the Knowledge Graph, this structure is used to
navigate through all information. Inspirational standards are: ISO-95, SOSA (see
deliverable 6.1).

 Property & Value concepts: this part classifies and structures different manifestations
of physical properties (speed, temperature, etc.), like measured values (e.g., from a
sensor), expected values (e.g., from a PLM system). These values can be single or
composite (e.g., time series, images), units can be attached, etc. Inspirational
standards are SysML QUDV, etc. The values can be used for AI in each of the above
refinements of User story KG1.1.
Some examples:

o Historical measurement data can be found in the Knowledge Graph for data
analytics or for training an AI algorithm.

o Insights from data analytics can be stored in the Knowledge Graph, such as a
calculated probability distribution function representing the uncertainty of the
execution time of a task or a correlation between the time executed and the
end quality.

o Input for inferencing a value based on a machine learning algorithm that can
predict quality based on the temperature during milling.

Note that this Property concept is different from the object and data properties as
defined in the context of ontologies. The Property concept here represents an asset's
physical or logical properties and is modelled as an ontology class.

 Data Source concepts: this part provides different aspects of data, namely historical
data or live data. The different possibilities to link to data sources are explained in
section 3.1.4, and the way to access the actual data is explained in sections 3.2.3 and
3.3.2.

 Artificial Intelligence concepts: this part includes some concepts to represent
elements in the artificial intelligence workflow. If WP4 produced an AI Simulation
model, it should be possible to store in the KG that this model provides values for a
specific (set of) properties.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 23 of 49

3.1.3 Knowledge Graph composition

The KG in ASSISTANT will be combined from several parts. A central KG models the domain
concepts, relationships, and data in common for all project partners. In an own separate KG
each partner references the generic KG, complements it, and enriches it with elements specific
to the partner’s research domain or use case. This is an essential enabler for the information
interoperability explained in deliverable D2.1 section 3.4.1. From the point of view of a user
exploring/querying the KG, this distinction is fully transparent and interoperable.

We identify the following user story as a refinement of User story KG2:

 User story KG2.1: As a domain modeler, I can extend the Knowledge Graph with the
concepts relevant to my domain so that all relevant data, information and knowledge
of my domain becomes accessible.

The domain concepts of the generic KG (developed in WP6 and explained in 3.1.2) are being
extended by the contributions from the different domains as shown in Figure 6:

 Work-package specific contributions for WP3, 4 and 5
 Industrial user specific contributions from AC, PSA, SE
 Demonstration specific contributions from WP7 for flexible assembly

Figure 6: Domain models - generic vs specific

In addition, WP2 plays an essential role as a watchdog of the ethical and human-centric vision.
The combined Knowledge Graph nor the Data Storage itself should contain or expose
information that violates the guidelines of WP2, and it should contain those pieces of
information required to realize WP2’s ethical and human-centric vision. Therefore WP2 plays
an important reviewing role during the creation and composition of the Knowledge Graph and
data models.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 24 of 49

3.1.4 The Knowledge Graph’s link with data: direct, virtual, or referencing

A Knowledge Graph contains concepts, properties and relationships. In addition, a KG can
contain so-called individuals.

 Concepts can be: Resource, Machine (kind of Resource), etc.
 Individuals are the instances of these concepts: all the machines in a company’s OT

zone are individuals of the “Machine” concept.

Typically, those individuals are considered to be the Knowledge Graph’s “data”. However, that
does not mean that the KG needs to contain all the data available in a company. This would be
undesirable and usually even unrealistic. So then, how do the KG and the data relate? Several
options exist, and typically, a KG assembles these aspects, balancing flexibility, cost, and
performance.

Direct individuals

A KG can contain all of its individuals inside its infrastructure. This is the traditional way of
constructing a KG: the KG contains all concepts and individuals.

We identify the following user story as a refinement of User story KG2:

 User story KG2.2: As a domain modeler, some of my domain-specific concepts can
store their data (individuals) in the KG itself. They do not need to be stored in
separate data sources.

Virtual Knowledge Graph

While a KG can contain the individuals for its concepts, it does not need to physically contain
them in all cases. A virtual KG dynamically obtains some of its individuals from other storage
kinds and provides them to the user on request. This causes them to scale better when the
number of individuals increases.

We identify the following user story as a refinement of User story KG2:

 User story KG2.3: As a domain modeler, I can define mapping rules between the
concepts in my Knowledge Graph and data sources in the Data Fabric so that, when
queried, individuals can be dynamically and automatically be retrieved from those
data sources, thus avoiding the need for duplicating all data in the Knowledge Graph.

In the above example, the Machine individuals might not be stored in the Knowledge graph but
in a database. A Virtual KG then acts as if it contains the individuals, but when the user requests
these, the Virtual KG retrieves them from the underlying database and returns them to the user
as if they were part of the KG.
For the implementation of its Virtual KG, the Data Fabric relies on Ontop (https://ontop-
vkg.org/). This method comes with its limitations:

 Ontop only supports virtualizing data with SQL interface;
 Ontop does not allow updating data. Instead, updates need to be applied directly to

the underlying database.

Referencing Knowledge Graph

Sometimes storing individuals in the KG as well as merely accessing them through the KG is
explicitly undesired. The sheer size of the related data might be prohibitive, or a KG might not
be suitable for representing those individuals.
This is, for example, applicable to time series data, which are very prevalent in the project’s
production scenarios. However, a KG does not have the appropriate structure to efficiently

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 25 of 49

handle massive amounts of time-based measurements for vast amounts of operational physical
properties (temperature of the motor of driveline X in machine Y, pressure of pump 3…).
Instead, the KG should handle such values as leaves in its structure: instead of containing the
values as individuals, it points to the appropriate data access entry of the Data Fabric.

We identify the following user story as a refinement of User story KG2:

 User story KG2.4: As a domain modeler, I can define references to data sources in the
Knowledge Graph so that, when queried, the location of data (e.g., a query and url to
a timeseries database) can be retrieved, thus avoiding the need for converting all data
to Knowledge Graph individuals.

This is followed by a user story as a refinement of User story KG1.2:
 User story KG1.2.1: As an AI expert in the Interactive Consumer zone, I can ask the

Knowledge Graph where I can find the timeseries data for my property of interest. The
KG provides me with a query that I can execute on the Data Access interface to
retrieve all desired historical data.

The example with time series for sensor data leads to a KG structure similar to the one depicted
in Figure 7. The outermost KG concepts (e.g., leaves such as InfluxDB) act as a proxy for the
real, externalized data source (i.e. the reference to the actual Influx instance, the database,
measurement, and field names). Therefore, a query on the KG does not return the underlying
data; instead returns the contents of the blue boxes shown on the right. For obtaining the
actual data, the Data Access interface of the Data Fabric needs to be accessed, specifying the
information in the blue box. The information currently mentioned in the blue boxes is stated
in legacy terms (such as an Influx link), but during the execution of the project, these
references will be transformed in terms of the concepts offered by the Data Fabric’s Data
Access interfaces.

Figure 7: Referencing Knowledge Graph (references in red, external links in blue)

3.1.5 Historical versus Live Knowledge Graph

As explained above, the KG occurs in the historical part of the Data Fabric and the Live part. It
does play the same role in both cases, but its coverage is different. The Live KG does not

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 26 of 49

represent “all” knowledge contained in the Data Fabric. Instead, it only represents that subset
of the knowledge that might be relevant to answer Live queries.
An example can clarify this based on User story KG1. Suppose a user in the Interactive Consumer
zone needs to develop an AI model, intelligently reacting to temperature variations of an inlet
pump of a specific machine type. Such a user will typically follow these steps:

 Interactively investigate the KG to obtain the required knowledge
(i.e., User story KG1.4)

 Perform some queries to obtain representative historical training data
(i.e., User story KG1.2)

 Train a model based on this data
 Perform another query to obtain some validation data

(i.e., User story KG1.2)
 Validate the model based on this data
 Iterate till the model seems to be ok
 Then the user deploys the model to operate on 10 Automated Consumer zones,

deployed in the ten sites of the factory. Unfortunately, some sites have the pump
connected through OPC-UA. Some sites have it on CAN-bus then distributed over DDS.
The user does not want to customize the data input for the AI model.
Instead, the AI model takes the generalized input
“MachineTypeX/Pump/Temperature”.

 After deployment on-site, the AI model first queries the Live Knowledge Graph to
know where the “MachineTypeX/Pump/Temperature” can be found on that site. Next,
it uses the correct connector to subscribe to the incoming data.

For such a scenario, the Live KG becomes site-specific and only contains the mappings between
the generic names and the concrete, site-specific implementation details.

Remark: This example serves the sole purpose of clarifying the scope difference between a
historical KG and a live one. An AI model probably does not need to perform this kind of
mapping, but instead, an on-site gateway will perform this kind of mapping. That gateway
needs similar configuration input, though, which can be found in the KG if desired.

3.1.6 Technical interfaces

Several techniques can be used to implement Knowledge Graphs. It is not the project’s purpose
to move the state-of-the-art for KG technology. The project’s focus is on the KG’s contents. So
the technical implementation of the KG will be performed with the following standard
ontological tooling. This can be seen in Table 1.

Table 1: Overview of KG technical implementations
Tool How to use / interface
Protégé
https://protege.stanford.edu/

A free, open-source ontology editor and framework.

This is an interactive Java application, usable in the Interactive
Consumer Zone for:

 Query & Store: editing the Knowledge Graph’s
structure: adding concepts, relationships, attributes,…

 Explore & Query: Editing and testing SPARQL queries on
the KG

Ontop
https://ontop-vkg.org/

A Virtual Knowledge Graph System.

This can be used in the Consumer zone:

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 27 of 49

 Query & Store: As a plugin to Protégé to edit the
mappings between the ontology and the underlying SQL-
alike data
(Interactive Consumer zone only)

 Query: As an http-endpoint to launch SPARQL queries
from either Consumer zone

VOWL
http://vowl.visualdataweb.org/

Visual Notation for OWL Ontologies

This can be used in the Interactive Consumer zone:

 Exploration: browsing through the ontology, finding
desired concepts or relationships

SPARQL
https://www.w3.org/TR/rdf-
sparql-query/

Query Language for RDF

This can be used in either Consumer zone:

 Query: retrieve desired information from the KG.
 Store: store additional information in the KG

(Interactive Consumer Zone only).
Apache Jena
https://jena.apache.org/

A free and open source Java framework for building RDF graphs
and Linked Data applications.

Since Ontop on its own cannot support the update of data (it is
intended solely for querying), a usable environment hides Ontop
behind a solution such as Apache Jena, that cares for query
federation.

Ontotext GraphDB
https://graphdb.ontotext.com/

GraphDB is an enterprise ready Semantic Graph Database.

In order to store ontologies and individuals on scale, the basic
abilities of files are not sufficient. A database such as GraphDB
will be integrated to support more advanced storage and levels
of federation that are not easily attainable using Jena.

Based on the technical tooling mentioned in this section, the Data Fabric provides access to the
Knowledge Graph. Figure 8 shows a minimalistic deployment only using Ontop’s OBDA approach
and is extended with the additional tools during the project. The figure shows how:

 a Browser can be used to explore the ontology through the OWL viewer
 Protégé and Ontop’s Protégé plugin can be used to define an ontology and its

mappings which then need to be stored (the ontological concepts) and deployed (the
mappings)

 Finally, Ontop provides a SPARQL endpoint, which is a standardized http-endpoint that
understands the SPARQL protocol. The SPARQL clients mentioned in the figure
depending on the Consumer’s technological choices. Clients exist for environments
such as Python, Databricks, Java, and many more. The indirect access through the KG
to the Data Access does not exclude direct access by the consumers to the Data Access
interfaces. What is more, the Referencing Knowledge Graph (see 3.1.4) by definition,
returns only references to the Data Access interfaces rather than returning the data
itself. The precise format of these references is determined during T6.3.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 28 of 49

Figure 8: Knowledge Graph interaction example for a deployment with Ontop.

3.2 Storage architecture

Figure 9: Position of historical data in the storage architecture of the Data Fabric (Green area)

A Data Fabric is a system that provides a unified architecture for the management and
provisioning of data. To promote flexibility and scalability, Data Fabric storage architectures
are typically realized as service-oriented distributed systems where (sets of) services provide
consistent interfaces to, and mechanisms for, access to data and storage capabilities. The
distributed nature of Data Fabrics allows scaling, flexible deployment, and adaptation of
systems, and is often leveraged to, e.g., facilitate the integration of systems across
organizational boundaries or combine the use of on-premise and cloud-based resources. In
addition, while primarily designed as substrates for data management and system-to-system
communication, Data Fabrics can also expose interfaces and tools to end-users to facilitate the
development of mechanisms for convenient management, search, and analysis of data.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 29 of 49

In pursuit of the objectives outlined in deliverable D6.1, ASSISTANT will make the following
contributions towards the development of a Data Fabric storage architecture for adaptive
manufacturing:

a) define a reference storage architecture for Data Fabric systems for adaptive
manufacturing,

b) provide a proof of concept implementation of the storage architecture, and
c) provide simulation- and optimization-based tools for intelligent management and

orchestration of the Data Fabric storage architecture subsystems.

The Data Fabric storage architecture will provide data storage and management functionality
for the tools developed in ASSISTANT. As manufacturing data are by their nature complex and
diverse, the Data Fabric will (as previously described) define integration interfaces and tools
for data representations using state of the art domain models. The remainder of this and the
following subsections of Section 3.2 outline and present the design rationale for the historical
data storage architecture of the Data Fabric (illustrated in Figure 9).

3.2.1 Multi-layer service structure

Figure 10: Conceptual overview: Layered service-oriented storage architecture for the Data Fabric

The storage architecture of the Data Fabric will be fully defined at implementation level (i.e.
with service instantiations, interface specifications, and documentation) in deliverable D6.3.
Here the Data Fabric storage architecture is presented with conceptual functionality groups as
illustrated in Figure 10 (detailing subsystems of the highlighted “historical data” area of Figure
9).
As illustrated, the Data Fabric architecture is defined as layered service-based architecture
with functionality stratified in four layers (bottom-up):

 a data storage layer provides functionality to store, access, and manipulate data;
 a data service layer provides contextual access and workflows for methods to locate and

access data;
 a (for external clients hidden) control plane layer provides functionality to orchestrate

and optimize the internal operations of the Data Fabric services;
 and (at the top) an integration layer facilitates integration of the core Data Fabric

services and external (e.g., digital twin based) tools.
To facilitate deep and efficient integration with users and external tools in the application
domain, the Data Fabric bases the integration layer on a set of domain models that can

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 30 of 49

represent a deeper understanding of the requirements and operational contexts of external
tools.

As illustrated in Figure, the Data Fabric storage architecture exposes functionality in the form
of network-accessible services. More specifically, the storage architecture services are
rendered as RESTful web services providing JSON data over HTTP request/response exchanges.
To facilitate ease of use and integration, the storage architecture also provides an abstraction
layer on top of this in the form of APIs available in the (for the ASSISTANT project) most common
programming languages and environments. For ease of adoption, example clients detailing the
use of the services in common scenarios are also planned to be provided (in conjunction with
full documentation of the service interfaces provided in deliverable D6.4). In addition, for
optional high-performance exchanges, service implementations building on Google protocol
buffers are also planned to be investigated. If such services are provided they will in interface
conform to the REST service interfaces (i.e. not impact the overall design of the storage
architecture) and be wrapped using the same type of APIs. Together with the previous section,
this complies to the needs expressed in deliverable D2.1 section 3.4.1 concerning information
& technical interoperability.

In summary, the full technical realization of the Data Fabric architecture will be documented
in deliverables D6.3 and D6.4. The remainder of this section focuses on the design philosophy
and the technical design choices of the system at architecture level. As outlined in Figure 10,
the Data Fabric storage architecture is designed as a layered data services architecture. This
design allows individual services (and clients to the services) to be implemented using different
types of well-established technologies such as Java, Python, REST and Google protocol buffers.
Services are abstracted behind well-documented APIs for easy integration, and example client
implementations will be provided in representative languages. The architecture defines a set
of core services with exchangeable reference implementations and has customization points in
the form of plug-ins for adaptations and integrations. As previously described, the Data Fabric
supports the use of knowledge graphs for integration with other tools and has built-in metadata
structures enabling lightweight computational systems for, e.g., reactive data curation,
advanced search, and data federation. In summary, the main design builds on open, freely
available technologies and targets flexibility to promote adoption in the manufacturing
industry.

3.2.2 Data storage

Key knowledge outcomes of the initial use case interviews and requirements gathering process
documented in deliverable D6.1 included that the vast majority of all data needing to be stored,
processed and used in the ASSISTANT digital twins can be considered (what we refer to as)
historical data: data produced by either equipment or tools that will be utilized in other parts
of production pipelines later on, but not necessarily at a known time (i.e. the data is potentially
produced and used at different times).
Another learning outcome closely connected to the storage aspect is that data is rarely
produced in the format it will be consumed, i.e. the data needs to be curated, filtered,
aggregated, or processed before it can provide value to other systems or tools. This is generally
true for most AI-based systems (and perhaps in particular for AI systems incorporating machine
learning elements), and as such the ASSISTANT Data Fabric storage architecture is designed to
meet these requirements. As illustrated in Figure 10, the Data Fabric storage architecture
recognizes five different types of data:

 Structured data: data where the structure and format of the data carries information itself,

in addition to the content of the payload data. This can include, e.g., workflow
specifications, JSON files, schema validated XML documents, database tables or CSV files

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 31 of 49

where the presence and structure of the documents themselves indicate or influence the
semantics for interpretation of the data.

 Unstructured data: in contrast to structured data, unstructured data is here defined as data
where the structure of the data does not carry information in itself (beyond semantics
needed to access and decode data, e.g., compression formats) at the time of storage.
Unstructured data can be, e.g., video surveillance data, screenshots, binary log files, or
other types of data that are temporarily stored as binary files for later processing.

 Time series data: the key characteristic of time series data is that they are composed of

sequences of data points indexed in time order. Typically time series measurements involve
repeated measurement of simple (one-dimensional) or complex (aggregated) metrics
streamed for processing. Their value lies in the observation or analysis of statistics of these
metrics. For time series data, the Data Fabric storage architecture systems are primarily
geared towards storage, access, and offline data processing. Intrasoft’s Streamhandler
platform instead performs online analysis of streaming data (see section 3.3).

 Metadata: Metadata (from “meta” - Greek “after” or “beyond”) is “data about data”. In
the storage architecture, all data is associated with a metadata document that contains
information about the data or the process/context in which the data was created. This
could include, for example, information about what tables are present in a database, what
machines were used when data were produced, what parameters were set in simulation
experiments, or data needed to track the provenance of data in pipelines that process data
in multiple steps.

 Log data: Finally, the log data stored in the storage architecture are collected from the

Data Fabric services themselves. These data are used for configuration control, debugging,
and resource management of the Data Fabric control plane services.

Figure 11: All storage architecture data items are stored with associated metadata documents.
Example data illustrating tags with details of the data origin and provenance.

With this view and classification of data, the Data Fabric storage architecture can classify and
store different types of data in different ways, enabling differentiable treatment and
processing of data. Note that data is not static in the storage architecture, unstructured data
can, for example, be transformed to structured data through processing (e.g., if a binary log is
parsed by a program to produce a semi-human-readable JSON file). Furthermore, due to
requirements for data persistence, data can optionally be stored with copy-on-write semantics,
having new copies of modified data sets/items created when data is processed and updated. In
contrast, the original data remains unaltered (defined due to an expressed need for always
having original data sets available for processing).

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 32 of 49

A key benefit for defining an architecture for data storage as a service-oriented architecture is
that a level of indirection between the storage mechanism (data sink/source) itself and the
service interfaces is gained. For example, the storage architecture can provide a unified service
interface to store multiple types of structured data and automatically redirect the storage of
JSON documents to a file system and relational data sets to a SQL database. Furthermore, data
can also be redirected to storage solutions based on policies and metadata interpretations,
e.g., storing CSV files in spreadsheet or SQL databases. Additionally, the service structure also
provides levels of indirection among the services, allowing, e.g., abstraction of service
interfaces, load balancing among services, resilience and dynamic updates of service
implementations without service interruption etc.

For the proof of concept implementation of the storage architecture, a reference
implementation of services populating each of the layers in Figure will be provided in
deliverable D6.3, complete with connections to common data sources such as SQL databases,
NoSQL databases, time series databases, spreadsheets, CSV files, and file system based storage
(including text-resolved storage formats such as JSON and XML) as needed by the project. To
avoid implementation and performance overhead in the reference implementations, service
implementations will expose native data and query formats when needed and provide facilities
to, e.g., make domain language transformations for higher-level query languages in domain
models. At the architectural level, all design decisions have been made with the perspective
that the architecture should be extensible to adapt to new requirements and support flexible
integration of new technologies.

3.2.3 Data services (search, queries, and access)

Aggregating the functionality of the data storage layer, the storage architecture provides
advanced functionality for search, queries, and access of data in the data service layer. As
illustrated in Figure, these services are organized into two main groups:

 Query and Search services provide functionality for identifying, locating, organizing,
searching, and aggregating information in data. These services primarily operate on
metadata, e.g., composing virtual data sets based on matching metadata tags
associated with stored data, but can also operate directly on data of known structure,
e.g., returning lists of data set identifiers for structured data sets matching queries.

 Storage and Retrieval services provide interfaces for managing data in more advanced
ways than the lower-level interfaces provided by the data storage layer services. For
example, a data storage layer service may provide an interface for storing data in a file
with a specific filename or in a specific database server, whereas a storage and retrieval
service may choose where and how to store the data for the requesting entity (be it
system or end-user). Similarly, lower-level services may provide interfaces for retrieving
data from specified sources, while higher level retrieval services expose interfaces for
retrieving data based on global namespace identifiers rather than storage-level
identifiers such as server IP numbers and local filenames.

Based on these abstractions, access to and exposure of data is intended to be provided at a
more abstract level, facilitating integration with domain models and providing a level of
indirection for data management as knowledge entities rather than bits and bytes stored at
physical devices. Service interfaces will naturally stipulate limitations on e.g., the format of
identifies and structure of metadata documents, but the design philosophy is to decouple data
from conventions imposed by underlying platforms, systems, and technologies to pursue more
abstract ways to represent and process knowledge and value from data.

Translation of data from underlying storage representations to useful reasoning system
representations is application dependent and either captured by domain models or

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 33 of 49

encapsulated in plug-in logic (see section 3.2.4). The Data Fabric storage system provides
mechanisms to store, process, and manage data but does not generally understand the content
of the data beyond what information is made available in the associated metadata. For this
reason, the design rationale of the storage architecture is “provide mechanism, not policy”, or
in other words, facilitate processing and management of data but not assume the responsibility
of owning data or being part of applications. Note that this does not exclude placing parts of
application workflows inside the Data Fabric (or even in the storage architecture, see plug-ins
below), but the perspective of the Data Fabric is to provide a system for unified access and
management of data, not to be part of applications of digital twin systems.

Figure 12: Example data fabric workflow

External equipment and systems store data in the data fabric. Metadata tags are scanned upon
storage and plug-ins are triggered based on preconfigured rules to perform light-weight processing
of data, e.g., data curation. Once stored, data is made available to external tools through service
interfaces. Data fabric clients, e.g., digital twins, make use of the data and may further interact

with the data fabric systems as part of their processes.

To illustrate this distinction, consider the simple example illustrated in Figure 12: a digital
twin aims to produce AI-based models to predict manufacturing capacity for a factory. The
factory equipment stores data in the Data Fabric using the storage services, and plug-ins
automatically tag all stored data with metadata about the data's origin, time span, and context.
The digital twin then identifies and assembles a virtual data set composed of all relevant data
(using the query and search services to identify data sets based on the metadata, and retrieves
selected data using the storage and retrieve level services) and proceeds to train an AI model
on the data using resources located outside the Data Fabric (e.g., machine learning algorithms
executing on an off-site compute cluster. Then stores the trained model for later use in the
digital twin inside the Data Fabric. To enable this scenario, plug-ins that can recognize and
interpret incoming data must be pre-deployed and contain logic for correctly processing the
data/metadata. In essence, this design embodies the principle of separation of concerns: the
role of the Data Fabric storage architecture is to manage data, and while it may provide
facilities for (lightweight) processing of data through the use of the plug-ins, the external
systems (e.g., the digital twin) using the Data Fabric remain responsible for providing
semantical understanding and logic for processing of data.

This design perspective extends (by necessity) also to the treatment of the format of data. Data
is naturally occurring in many different formats and shapes in manufacturing, and a Data Fabric
storage system must be able to deal with the diversity and heterogeneity of data (a key learning
outcome of deliverable D6.1). As such, data can be stored in many different formats in the Data
Fabric, and a design choice needs to be made whether to try to provide the earlier discussed
data abstraction at storage or processing level. Following the earlier discussed design
philosophy, the storage architecture forwards data in its stored format to processing logic (i.e.
logic housed in plug-ins or external tools) and does not attempt to provide substantial
abstractions in its service interfaces.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 34 of 49

3.2.4 Compute and processing

To facilitate lightweight data processing and curation, the storage architecture exposes
customizable plug-in structures at the service level where data processing and interpretation
logic can be inserted to, e.g., convert data representations, filter outliers in data, or trigger
customizable reaction to events in data streams (as illustrated in Figure 13). For language,
deployment, and platform flexibility, plug-in logic is encapsulated and deployed as
containerized services that can be invoked from storage architecture services (but not
externally). Using this scheme, service realizations can be implemented using different
languages and toolkits, e.g., Java RESTlets, and flexibly combined with data processing plug-
ins implemented in other languages, e.g., Python scripts.

Figure 13: Detailed workflow: plug-in may be reactively triggered based on detection of

preconfigured metadata tags. Plug-ins may operate on metadata or data, and may update, delete,
or create new data items or metadata tags as part of their processes.

For technical reasons, limitations on the allowed processing time and resource capacity (e.g.,
amount of CPU cores or RAM) are imposed on plug-ins. The plug-in structures of the storage
architecture are not intended to be viewed as a general compute cloud construct and should
not be used for computationally intensive or time-consuming tasks such as simulations, machine
learning model training or data analytics tasks. Instead, they are intended for short-lived
limited complexity tasks such as data format translations or metadata analysis and
classification. Data produced by plug-in processing are either stored as conventional data (e.g.,
in data format translation or filtering) or as metadata (e.g., in the case of metadata tagging or
aggregation of data sets).

3.2.5 Control Plane

As illustrated in Figure 10, the storage architecture houses functionality for resource
management within the Data Fabric in a dedicated control plane. The control plane services
define functionality for primarily three areas:

 Workload prediction: algorithms and tools that predict the workloads and capacity needs
for the Data Fabric storage architecture services. These services and tools are used to
(using statistical approaches) analyze the resource needs and utilization rates of
infrastructure resources and can also be used to dynamically adjust service deployment
patterns to meet changes in resource requirements.

 Data placement: heuristics and algorithms that evaluate technical and business trade-
offs for data placement within the Data Fabric system. Operating on metrics, such as
cost efficiency and technical performance (e.g., response time or query throughput),
and constraints, such as GDPR regulations and legal or policy compliance; data

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 35 of 49

placement tools can inform and guide operators and systems in the management of the
Data Fabric services.

 Data Fabric orchestration: algorithms and systems for policy-guided automation of
system deployment and configuration. Data Fabric services are designed to be flexibly
using modern deployment tools and are envisioned to be managed like cloud native
applications deployed across heterogeneous resource landscapes (e.g., combining on-
premise, edge, and cloud resources).

The storage architecture control plane will be designed for inter-operation with the Data Fabric
simulator (concurrently developed in Task T6.3), which will also be used as the basis for the
demonstration of orchestration results developed in Task 6.5.

3.3 Live streaming architecture

This section highlights the streaming capabilities of the ASSISTANT solution. As depicted in
Figure 14, four main components compromise the streaming solution: the data gateway, the
data access, the data short-term storage, and the streaming infrastructure. An explanation of
each component will be given next.

Figure 14: Position of Live data in the Data Fabric (Green area)

3.3.1 Streaming infrastructure (Streamhandler platform)

This component is a distributed event streaming platform that enables event-driven monitoring
and event processing and a distributed messaging system providing high availability and
horizontal scaling. Figure 15 depicts the platform architecture. In the middle section of the
figure - based on the Apache Kafka - is the Streaming core platform with the data connectors
and the schema registry. On top are the platform administrator tools for monitoring and fine-
tuning the platform and security management tools. On the left upper side relies the data
sources (OT Zone) while on the left bottom side is the Data Fabric persistence storage. Finally
on the right side of the figure (Automated Consumer Zone) lie the streaming client application
that use the streaming data for various applications including data analytics, dashboarding etc.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 36 of 49

Figure 15: Streamhandler platform centrally in the Live streaming zone

The main concept of the Streamhandler platform is that events and/or messages consist of
records. When writing data to Streamhandler, then for each record, a key/value pair is
required. The value is the record itself the key is representing the nature/context of the data.
For reading values from the platform it must be provided a key which means that it must be
notified the platform for which records (nature/context) the reader wants to be notified.

3.3.1.1 Short term historic db

Streamhandler as having in its core Apache Kafka and leverages Kafka’s functionalities. Kafka
is designed to serve as a “source of truth store” for data, and as such, it can be used as temporal
and permanent storage if the use case requires it. Moreover, it provides a fault tolerant way of
managing messages, storing them into files (log files) which can be replicated across different
machines like a distributed file system (allowing scaling). Nevertheless, the Data Fabric
architecture does not impose a need of permanent data storage but temporary storage will
facilitate the development of data processing jobs that perform computation on the data and
store their result, allowing them to change their processing code and recompute the results
(important especially in the development phase). Additionally, streaming analytics may use this
functionality to avoid persistent storage and populate their internal cache from the temporary
storage every time the application starts re-reading all the messages stored in the temporary
storage

3.3.2 Data Gateway & Data Access components

In principle, the main actors of the platform are the data producers (databases, data gateways,
etc) and are depicted on the left side of the platform architecture (Figure 15), while on the
same figure on the right side are the data consumers (Data Analytics & visualization, persistence
storage etc.) Figure 16 shows the data producers on top pushing the data in the platform (Kafka
cluster) and the consumers at the bottom receiving data. There are also two other minor actors
which are the connectors and the stream processors. The connectors in an efficient way provide

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 37 of 49

data stored on external databases to be used by the data consumers, while the stream
processors are a special kind of data consumer which pushes back the result of the data
processing.

Figure 16: Data producers and data consumers

3.3.2.1 Data Gateway

The Data Gateway component is a data producer in the Streamhandler ecosystem. The gateway
plays the role of a mediator between the platform itself and the actual devices on the shopfloor
which generate the data. Moreover, it integrates these devices, offering a unified way of
accessing the data itself. The gateway’s role in ASSISTANT is to monitor the changes happening
on the shopfloor and forward them to the core platform to be analysed and stored. As data
producer, the data gateway has to implement a specific API provided by the platform supporting
multiple programming languages. Although the Data gateway is shown as a single box on the
figure, a final deployment probably consists of many smaller data gateways, each focusing on
the part of the data.

3.3.2.2 Data Access

The Data Access component is a data consumer in the Streamhandler ecosystem. Implementing
a specific API (provided by the platform supporting multiple programming languages) is notified
upon data existence as preconfigured.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 38 of 49

4. User view

During the project, the Data Fabric will have several users:
 The research work packages: WP3, WP4, and WP5
 The industrial users: AC, PSA, SE
 The demonstration work package: WP7

As described in D6.1 Data Fabric Requirements, the Data Fabric should be suitable to serve all
of these users’ needs. This does not mean there should be a single Data Fabric instance that
addresses all needs. Users need to be able to deploy and govern their own Data Fabric. Indeed,
large parts of the Data Fabric’s implementation for a specific user will depend on the
deployment needs of the individual user (see 2.4).
For each user, this chapter:

 mentions the concrete case for the user (more detail to be found in D6.1),
 indicates which parts of the architecture are relevant to the user,
 maps the generic interactions to the way each user will use these interactions.

The Deploy interaction is not mentioned in this table, since all users will need to
deploy the mappings between the user-specific Knowledge Graph and the underlying
historical or calculated data. The difference between users’ deployed contents does
not imply any technical differences in the infrastructure.

The purpose of this chapter is to mitigate any inconsistencies between the users’ expectations
and the proposed architecture. More detailed deployment and implementation decisions will
be taken in the following stages of the project.

4.1 WP3 – Process Planning

Figure 17: Scope of interest to WP3 (shaded area out of scope)

WP3 uses the Data Fabric for the following tasks::

 T3.2 Process engineer in the loop
 T3.3 Digital twins enrichment and simulation for process planning
 T3.4 Predictive analytics for process planning
 T3.5 Prescriptive analytics for robust process planning

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 39 of 49

In order to accomplish these tasks, WP3 has the following interactions with the Data Fabric:

 Interaction

H
is

to
ri

ca
l

KG

Explore Understand the data which is available concerning process planning.
 Production System layout
 Resource library (devices allocated at the production lines

and devices in the storage – reconfiguration) with included
skills/capabilities

 Product (variants) and processes (requirements)
 Process plans

Query Find historical data, find model as blob (e.g., CAD) and extract model
structure and constraints (e.g., of intended process graphs). WP3
queries data through the KG (stored in the data fabric).

 Product data (CAD; process data)
 Production/assembly system data (CAD models and layout

(e.g. JSON))
 Resources (CAD models, skill models, resource parameters)
 Historical data (Changes; KPIs - Times, Quality, Costs)

Store Store additional concepts and relationships in the Knowledge
Graph suitable for WP3 planning context (data formats: .owl;
.json; etc.)

 Store output models of WP3 modules (e.g., product structure,
production system model, process plans, associated KPIs of
each process step).

 Store result of data analytics, providing right parameters
(e.g., stochastic) for process plan optimization.

Data

Query The Data Fabric ingests company-specific systems relevant to process
planning (ERP, PLM…).
WP3 queries this data during its analysis.

 Product data
o CAD models
o Additional process data (e.g. screwing parameters,

joining force)
o Additional requirements data (e.g. process relevance;

critical process --> need of monitoring; e.g. process
data needed due to licensing (medical sector))

 Production/assembly system data
o CAD models and layout (e.g. JSON)

 Resources (process execution and logistics)
o CAD models
o Skill models
o Resource parameters

 Historical data
o KPIs per process-resource combination (process and

product quality – e.g. success in percentage)
o Historical process times
o Historical process quality
o Historical process quality
o Historical change data (change description and impact

(resulting KPIs))
Store WP3 stores its predicted planning and corresponding models into the

Data Fabric.
 Process plans (and process monitoring plans --> as .json)

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 40 of 49

 Product, Production, Process Graph
 Continuous data upgrade

Li
ve

 KG Query WP3 does not directly interact with the live zone. The historical
production data arrives from the OT zone into the historical Data
Fabric, but these aspects are not the focus of WP3. Data

Consume
Produce

4.2 WP4 – Production Planning & Scheduling

Figure 18: Scope of interest to WP4 (shaded area out of scope)

WP4’s needs for the Data Fabric are similar to WP3’s at architectural level. The Data Fabric is
used in the following tasks:

 T4.2 Production Manager in the loop
 T4.3 Digital twins enrichment and simulation
 T4.4 Predictive and prescriptive analytics for production planning
 T4.5 Predictive and prescriptive analytics for scheduling

The next paragraph contains the WP4 interactions from three different perspectives because
each of these aspects use the Data Fabric slightly differently:

 Simulation perspective
 Production planning perspective
 Model acquisition and scheduling perspective

4.2.1 WP4’s interactions from Simulation perspective

WP4 has the following interactions with the Data Fabric from a simulation perspective:

 Interaction

H
is

to
ri

ca
l

KG

Explore Understand, check, and count the available data and their
relations concerning production planning and scheduling.
These are

 Production system data (products, BOM, processes,
resources, …)

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 41 of 49

 Production load data (reference to order lists, e.g.
taken and stored as snapshot from ERP)

 Simulation models (ID, reference to file)
 Simulation data (simulation run ID, simulation model,

use case scenario, configurations, references to
input/load data, references to output/result data,
KPIs)

 ML data (ID, method, use case scenario, simulation
runs, results)

 Trained decision model (ID, reference to ML data the
model is based on)

 (References to) calculated plans/schedules
Query Find (historic) data of the production system and

production load
 Find simulation models
 Find previous simulation runs
 Find previous ML training progress and results
 Find trained decision model
 Find calculated plan/schedule

Store Store simulation models
 Store simulation data (after execution)
 Store ML data (during training) and acquired model

(after training)
 Store calculated plan/schedule

Data

Query Get production system data
(to create a simulation model)

 Get production load data
(to create the input data for a simulation run)

The Data Fabric ingests data (production system data and
production load data) from the industrial use cases (SE & AC)
relevant to planning and scheduling (artificial data derived
and distorted from ERP data). The precise import of this data
from the use case partner systems is out of scope for the
project.

 Get previous simulation outputs (to be used in ML)
 Get calculated plans/schedules (to view and

implement)
Store Simulation input/output data

 ML data (training progress)
 Calculated plans/schedules (using ML-trained models)

(stored in the Data and referenced by the KG)

Li
ve

 KG Query WP4 does not directly interact with the live zone.

Data
Consume
Produce

4.2.2 WP4’s interactions from a Planning perspective

WP4 has the following interactions with the Data Fabric from a production planning perspective:

 Interaction

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 42 of 49

H
is

to
ri

ca
l

KG

Explore Understand and check available data concerning production
planning.
These are:

 Past production plans
 Products cycle time targets
 Resources available for the production line
 Set of existing products mix
 Shift models
 Capacity of the production line
 Production line KPIs
 Past set up models
 Factory maintenance plans and historical data on the

frequency of machines breakdown
 Current production line uncertainties

(parameters/variables)
Query Find the demand per period and per end-item

(provide historical data to create the forecast)
 Find the amount of time consume per operation on

each resource.
 Find the amount of hour per period each resource is

available (without extra hours)
 Find the percentage of quality item resulting

production lot (provide historical data to create the
forecast)

 Find the number of period between the release of an
order decided by production planner and the period
in which the order is produced/delivered (provide
historical data to create the forecast)

 Find the amount of time the machines/worker were
running during a period.

Store Store production planning models
 Store production plans
 Store purchasing plans
 Store planned inventory
 Store resource planned capacity consumption
 Store information regarding the impact of uncertainty

on production plans and formula learned

Data

Query Set of resources (Primary resource and tools/workers
shared among resources)

 Flexible bill of material and bill of processes
 Setup, inventory, unit production costs, extra

capacity cost per resource, ...
 Inventory levels for end-items and components.
 Targeted KPI values given by the user.
 Actual production at the end of a period (quantity of

each item produced/delivered)
 KPIs values from end users

Store Production quantity per item/ per period
 Extra capacity required per period per resource
 Quantity sub-contracted
 Quantity to order to suppliers
 Output KPIs values

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 43 of 49

Li
ve

 KG Query WP4 does not directly interact with the live zone.

Data
Consume
Produce

4.2.3 WP4’s interactions from model acquisition and scheduling perspective

WP4 has the following interactions with the Data Fabric from a model acquisition and scheduling
perspective:

 Interaction

H
is

to
ri

ca
l

KG

Explore Understand and check available data concerning scheduling.
These data are:

 Allocation and sequencing decisions from past factory
production schedule

Query Import some tables (e.g. a table containing the tasks
and a table describing the resources) describing a
schedule from which a model will be acquired.

 Get the information regarding what in these tables are
the input parameters and what are the variables.

 Get the information of what are the global cost (if
relevant).

 Import a set of acquired constraints and the
corresponding model.

Store Record a set of acquired constraints as well as the
corresponding model.

 Record the schedule which was generated by
executing a given model.

Data

Query Set of resources
 Bill of processes
 Resource availability

Store UML model, class diagrams in the model, textual form
of the acquired model with link back to the data from
which the model was acquired

 Gantt chart and resource utilization
 Optimization cost and main KPIs

Li
ve

 KG Query WP4 does not directly interact with the live zone.

Data
Consume
Produce

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 44 of 49

4.3 WP5 – RT control & actuation

Figure 19: Scope of interest to WP5 (no shaded area -> full system in scope)

The data fabric is used in the following tasks:

 T5.2 Smart interfaces to operators
 T5.3 Digital Twin for Execution
 T5.4 Fenceless H-R collaboration
 T5.5 AI for dynamic process execution and quality control

In order to accomplish these tasks, WP5 has the following interactions with the Data Fabric:

 Interaction

H
is

to
ri

ca
l

KG

Explore Understand the data available in WP3 & WP4. Determine
which WP5 specific concepts and individuals are available
(e.g. which sensors)

Query Find historical data, and find the location of streaming data.
Store Store additional concepts and relationships in the Knowledge

Graph suitable for WP5’s real-time execution context.
e.g. Store resource suitability per process/task

Data

Query Query historical data (e.g. flow of human actions, repeated
mistakes) for the purpose of training models for the Digital
Twin for Execution, structured (SQL alike) and time series.
Query data and models from WP3 & WP4.

Store Store simulation models, application configuration data, etc.

Li
ve

KG Query Find the right sensors and data streams, etc.

Data

Consume Ingest OT data for applications in the Automated Consumer
Zone, such as Monitoring, Dashboarding, Digital Twin for
Execution models.
This includes live sensor data.

Produce Store knowledge obtained during operation (e.g., number of
robot adjustments due to obstacle), and from live simulations
(e.g. Resource execution errors, Safety violations, Robot
Trajectories, Process Quality results, Simulation models,
Current Process, Valid process plans, Updated data or
constrains such as new duration of operations,

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 45 of 49

geometry/collision errors for the corresponding resource or
operations).

4.4 Atlas Copco

The scope of the use case’s interest is the full Data Fabric, including historical and live data.

The use case serves two goals:

 Measure as little as possible while maintaining the same quality for machined parts.
 Make new operators as experienced as an employee with 20 years of working

experience in the machining area.

 Interaction

H
is

to
ri

ca
l

KG

Explore Browse & understand the domain-structure of the data,
independent of its underlying technical structure.

Query All structural data will be queried through the KG (most of it
virtually).

Store Experiments performed to develop the AI model will be stored
for future reference & reproduction.

Data

Query Lots of time series of physical properties measured, and the
results of quality tests performed during past production runs
are required for AI model training.

Store Ingestion of time series from the live zone.
Import of PLM/MES data related to product and planning.
Such historical data imports are out-of-scope for the project,
since they remain under strict control of AC.

Li
ve

KG Query None foreseen

Data

Consume Consumption of live data will only happen to a limited degree.
The proof-of-concept Data Fabric will not be directly
connected to a real AC production environment. Instead, the
required OT devices will be stimulated to produce the
required inputs.
Quality case:

 Consume the property values required for the
computation of the observations of the AI model.
Mostly temperature readings, remaining useful life of
the used tools, vibrations, and more.

Operator instructions case:
 The AI algorithm monitors all properties of the

circumstances in which an operator is working (day of
week, skills, previous errors, temperature, current
task…) for consumption.

Produce Quality case:
 Produce the verdict “measure yes/no”, i.e. classify a

part as having or not the sufficient quality level o
continue being processed in the manufacturing
process.
This will be consumed by the operator and the
historic side. The latter will use it to monitor / re-
train the AI algorithm.

Operator instructions case:

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 46 of 49

 Produce the selection of instructions that are
suitable for this operator in these circumstances.

4.5 PSA – Stellantis

The scope of the use case’s interest is the full Data Fabric, including historical as well as live
data.

The use case serves the following goal:

 Optimization of assembly process of an electrical drive-line

 Interaction

H
is

to
ri

ca
l KG

Explore
Query Production schedule

Assembly graph
Resource suitability table
All valid Process graphs
Desired/Expected KPIs

Store

Data

Query CAD files related to process, workplace layout
Store Reported issues corresponding to the execution of a process

by resource, Achieved KPIs, Recordings of process data for
future training usage

Li
ve

KG Query

Data

Consume
Produce Resource working time

Resource execution status
Resource execution errors
Safety violations
Robot Trajectories
Process Quality results
Current Process CT

4.6 Siemens Energy

The use case’s scope of interest is equal to that of WP3/4, so making use on the historical part
of the Data Fabric only.

The use case serves the following goal:

 Optimization of a up to two-year planning and a shorter scheduling horizon on
operational data. Simulation (e.g. based on Tecnomatix Plant Simulation) will be an
essential part of this optimization.

 Interaction

H
is

to
ri

ca
l

KG
Explore Understand, check, and count the available data and their

relations with respect to production planning and scheduling.
These are

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 47 of 49

 Production system data (products, BOM, processes,
resources, …)

 Production load data (reference to order lists, e.g.
taken and stored as snapshot from ERP)

 Simulation models (ID, reference to file)
 Simulation data (simulation run ID, simulation model,

use case scenario, configurations, references to
input/load data, references to output/result data,
KPIs)

 ML data (ID, method, use case scenario, simulation
runs, results)

 Trained decision model (ID, reference to ML data the
model is based on)

 (References to) calculated plans/schedules
Query Find (historic) data of the production system and

production load
 Find simulation models
 Find previous simulation runs
 Find previous ML training progress and results
 Find trained decision model
 Find calculated plan/schedule

Store Store simulation models
 Store simulation data (after execution)
 Store ML data (during training) and acquired model

(after training)
 Store calculated plan/schedule

Data

Query Get production system data
(to create a simulation model)

 Get production load data
(to create the input data for a simulation run)

The Data Fabric ingests data (production system data and
production load data) from SE relevant to planning and
scheduling (artificial data derived and distorted from ERP
data). The precise import of this data from SE systems is out
of scope for the project.

 Get previous simulation outputs (to be used in ML)
 Get calculated plans/schedules (to view and

implement)
Store Simulation input/output data

 ML data (training progress)
 Calculated plans/schedules (using ML-trained models)

(stored in the Data and referenced by the KG)

Li
ve

 KG Query The SE use case does not directly interact with the live zone.

Data
Consume
Produce

4.7 WP 7 – Demonstrator

Since WP7 is intended to demonstrate the contributions of all parts of the project, its scope is
obviously the full Data Fabric, including historical as well as live data.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 48 of 49

This work package serves the following goal:

 Demonstration of all the project’s novelties on a flexible assembly setup

 Interaction

H
is

to
ri

ca
l

KG

Explore Explore and understand the available data and its sources,
which are of interest to the flexible assembly setup.

Query Find and retrieve historical data generated by past
configurations and simulations by the flexible assembly,
which could be spread across several data sources. Queries to
the Data Fabric should be possible in function of time periods
or configurations made in the past (e.g. via a unique ID).
The retrieved knowledge graphs can then be used in analytical
post-processing tasks.

Store Store relationships, mapping information and other meta data
between available data stores (RDBMS data stores (SQL),
Object data stores (noSQL), alternative blob data stores, etc.)

Data

Query Query historic data for the purpose of training models for the
Digital Twin for Execution, structured (SQL alike) and time-
series.
Query data and models from WP3 & WP4.

Store Data-streams coming from the flexible assembly during
execution and/or simulation runs should be stored in an
Operational Historian, typically found in OT zones. Preferable
this is in a form of a time-series database.

Open question if a RDBMS (SQL) or object database (e.g.
MongoDB) is to be used. This is dependent on the type of
information that has to be stored, coming from the flexible
assembly, e.g.:

1. configuration (PLM-info),
2. recipe of assembly/production,
3. commands from executors,
4. alarms and events,
5. warnings and errors,
6. ...

Queries to the data store should be possible in function of
time periods or configurations made in the past (e.g. via a
unique ID).

Li
ve

KG
Query Find and retrieve data-streams coming from e.g. sensory

devices internal or external to the flexible assembly,
regardless of their source or communication protocol.

Data

Consume Ingest OT data for applications in the Automated Consumer
Zone (Monitoring, Dashboarding, Digital Twin for Execution
models)

Produce Store knowledge obtained during operation (e.g., number of
robot adjustments due to obstacle) and live simulations.
Same information mentioned in historical/data/store.

Project 101000165 ASSISTANT

D6.2 – Data Fabric Architecture Specification Page 49 of 49

5. Conclusions

The Data Fabric architecture proposed in this deliverable considers the needs of the
manufacturing use cases that are handled throughout the ASSISTANT project. Based on the
discussions between the WP4 partners, there is a good agreement on describing, scoping and
features matching the goals of the ASSISTANT project and the needs of its use cases and
industrial users.
New insights will pop up during the project’s execution when implementing the architecture
(T6.3) or any of the digital twins. Through continuous synchronization between the stakeholders
and the WP6 contributors, these insights will mature the Data Fabric’s architecture, design and
implementation.

6. Appendix

6.1 Abbreviations

Table 2: Abbreviations

Abbreviation Meaning
ASSISTANT LeArning and robuSt decision SupporT systems for agile

mANufacTuring environments
DF Data Fabric
KG Knowledge Graph
OT Operational Technology (devices on the factory floor)
VKG Virtual Knowledge Graph

