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Publishable Executive Summary

The industry 4.0 revolution currently underway foster mass customization and highly re‐configurable
production systems. In these complex production systems, planning and scheduling cannot rely
on simple rules such as first in first out or the simple material requirement planning logic. In‐
deed, the resulting plans are sub‐optimals, and they do not account for uncertainty properly.
Companies must shift towards smart production planning and scheduling solutions, where an
AI component can help the production manager to make the best use of data to suggest opti‐
mized plans and schedules. We propose the concept of intelligent digital twins, that enhance
optimization approaches for production planning and scheduling with industry 4.0 technologies:
internet of things, ontology, simulation, and machine learning. The resulting decision support
system synchronizes with the shop floor, and they can properly account for various sources of
uncertainty.

The work package 4 of ASSISTANT aims to develop such intelligent digital twin for production
planning and scheduling, and this document aims to define their requirements and their archi‐
tecture. First, based on an extensive literature review, we provided a state‐of‐the‐art on the
use of big data analytic, artificial intelligence (AI), Internet of Thing (IoT), and simulation in
manufacturing operation management. Second, we define the requirements collected during
multiple discussions with manufacturing use cases, and an in depth analysis of their shop floor
operation. Finally, we provide the architecture for the modules developed in work package 4.
This architecture rely on a data fabric that provide all relevant data. This data fabric is devel‐
oped in work package 6, and the connection with the data fabric is defined in the architecture
of ASSISTANT.

The development of the proposed intelligent digital twins for production planning and schedul‐
ing requires several breakthroughs in comparison with the current state‐of‐the‐art. First, the
requirements show the importance of model acquisition approaches for scheduling and produc‐
tion planning. Such an approach learns the constraints from data and accurate simulations of the
shop floor. As a result, the constraint programming and mixed‐integer linear programs commonly
used in production planning and scheduling describe accurately the manufacturing processes. In
addition, these models must incorporate uncertainties to properly hedge against unexpected
events. However, the stochastic models do not scale well, and we will investigate appropriate
optimization approaches to circumvent this issue.
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1 Introduction

1.1 Motivation

Recent advances in technological development drive manufacturing systems to be adaptive,
flexible, and reconfigurable. These advances foster the development of mass customization and
more recently mass individualization, and they give a real competitive advantage to the industry.
Indeed, they increase the service to customers in terms of product satisfaction and tight due
dates. However, the production system becomes hard to manage, because the batch sizes tend
to become smaller and smaller, the number of possible configurations of the shop floor increases,
and many parameters vary significantly. In this context, to remain competitive, companies must
make the best use of their resources, and thus plan and schedule their production carefully.

According to a recent survey [BARC, 2016], 74% of the companies still use Excel for production
planning, and 33% rely solely on Excel to plan their production. Regarding scheduling, inter‐
views conducted with ASSISTANT’s use cases show that simple rules and human intuition remain
the most common way to schedule production. As a human cannot analyze the huge number of
scheduling alternatives, the resulting production schedule is sub‐optimal. Advances in computer
hardware and artificial intelligence algorithms allow a production planner to suggest optimized
production plans and schedules. For instance, Thevenin et al. [2017] report that an optimization
tool for short‐term scheduling may reduce production costs (setup, raw material urgent deliv‐
eries, order rejection, tardiness) by 45% when compared to plans produced by hand. However,
advanced planning and scheduling (APS) tools remain underused by the manufacturing indus‐
try. In addition, to realize their full potential, existing APS tools must be enhanced to take
advantage of the massive amount of data generated on the shop floor, to integrate easily, to
take advantage of new technologies fostered by industry 4.0 (IoT, simulation, big data analytics,
etc.), and to adjust automatically to the constant changes on the shop floor. To overcome these
shortcomings, we propose the concept of intelligent digital twins for production planning and
scheduling.

The intelligent digital twin extends the classical digital twin to include prescriptive analytic.
Prescriptive analytic in production planning and scheduling relies on optimization models (e.g.,
mathematical programming, and constraint programming), these models represent the produc‐
tion system through mathematical equations. An intelligent digital twin is an optimization model
that automatically learns parts of the parameters and constraints to enhance its accuracy and
to remain synchronized with the shop floor to make suggestions on how to proceed or even to
take action autonomously. Such tools integrate machine learning techniques with optimization.
On the one hand, statistical AI methods allow one to learn the parameters of the models to deal
efficiently with uncertainties in the workshop. On the other hand, symbolic AI methods enable
one to acquire explainable models to automatically learn the functioning of constantly changing
production systems.

By fostering the adoption of AI for production planning and scheduling, and by increasing the
accuracy of the production planning approaches, the resulting intelligent digital twin will have
a strong impact on the manufacturing industry. Despite the short return on investment of pre‐
scriptive analytic tools, they are underused in the manufacturing industry. This situation may
be explained by a lack of communications around these tools, or by the high initial investment
costs. The implementation of prescriptive analytic tools requires high consulting costs to adapt
software. Model acquisition from data will reduce these costs since the software will automati‐
cally adjust to the requirements of the shop floor. This will result in the large‐scale adoption of
prescriptive analytics in manufacturing. Automatic constraint learning will also help to better
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represent the production capacity during production planning. Classical approaches that rely on
simple formulas to compare the load to the capacity, cannot account for the complex production
processes encountered in today’s shop floor (as resources can perform a wider range of tasks).
We will investigate howmachine learning can help to automatically learn the production capacity
from the data. Finally, adaptive stochastic/robust optimization approaches provide production
plans not only robust to various uncertainties, but that also select the states (resource usage,
inventory level) to react appropriately when unknown parameters unfold. The intelligent digital
twins for production planning and scheduling shall lead to production plans and schedules with
the right level of agility.

1.2 Objective

This document aims to provide a precise description of the tools developed within WP4. The ob‐
jective is to have all the elements required to ensure smooth development during the project. Of
course, this architecture will likely evolve with the development of the tools during the project.
As described in ASSISTANT’s requirement engineering procedure available in the appendix, the
definition of the architecture starts with the definition of the requirements.

The requirement analysis starts with a state‐of‐the‐art on Artificial Intelligence (AI), Digital Twins
(DT), Simulation, and IoT for production planning and scheduling. To focus the literature on the
main contribution of the project, this state‐of‐the‐art gives interested readers (within or outside
of ASSISTANT’s consortium) a clear view of recent development regarding the use of Industry
4.0 technology to enhance optimization approaches for production planning and scheduling.
In addition, we provide the results of an in‐depth analysis of the shop floor of two use cases of
ASSISTANT (Atlas Copco and Siemens Energy). The document also reports the results of interviews
conducted with ASSISTANT’s use case providers to identify the needs of end‐users.

Based on this analysis, the document lists the requirements for the intelligent digital twin for
production planning and scheduling. From these requirements, we draft the architecture of our
intelligent digital twins. The deliverable describes each module, the communications between
the tools, the data flow between the modules, the programming language, the required libraries,
and the research work required to build our vision.

1.3 Interaction with other deliverable

Deliverable D4.1 is mainly an input for the technical development in WP4. More precisely, it
provides the specification, requirements, and the research agenda for the tools D4.2, D.4.3,
D4.4. Deliverable D4.1 is based on the input from D7.1 that describes the manufacturing situa‐
tion in planning and scheduling for the use cases in ASSISTANT. In addition, D4.1 was developed
in synergy with D2.1, D3.1, D5.1, and D6.1. D2.1 describes the ethical and human‐centric archi‐
tecture of ASSISTANT. On the one hand, the interaction with T2.1 helped us to question ethics
within tools from WP4. On the other hand, interactions with T2.2 the modules developed in
WP4 fit within the global architecture of ASSISTANT. Finally, we synchronized the deliverable
that provides the requirement and architecture for the other twins and the data fabric tech‐
nical of ASSISTANT (D3.1, D5.1, D6.1). In particular, we defined a common methodology for
the requirements engineering, and we synchronized the questionnaires and interviews with the
end‐users. These two documents are available in the appendix.
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1.4 Structure of the deliverable report

Section 2 provides the state‐of‐the‐art on production planning and scheduling in the industry
4.0 era. Section 3 positions WP4 within the ASSISTANT project, and it explains how the tools
developed in WP4 will interact with the tools developed in other work packages. Section 4
provides the results of interviews conducted with end‐users, a description of the two use cases
that for WP4, and the requirements of our intelligent digital twins for production planning and for
scheduling. This use case description complements deliverable D7.1 with a focus on production
planning and scheduling. Section 5 describes the tools that will be developed in WP4. For each
tool, we describe the research objectives, the input/output data, the communication with other
modules tools, and the technology we planned to use for development. A conclusion ends the
deliverable.

2 State‐of‐the‐art on production planning and scheduling in the big
data era

This section starts with a presentation of the classical function of production planning, before
introducing the main concept of the intelligent digital twin for production planning. We then
provide a state‐of‐the‐art to on the main elements involved in the intelligent digital twin for pro‐
duction planning: The use of Internet of Things (IoT), big data analytic, Digital twins, simulation‐
optimization, and stochastic and robust optimization in production planning.

2.1 Definition, structure, and research overview for the production planning

Production planning and scheduling systems help companies match manufacturing perfor‐
mance with customer demands [Bonney, 2000]. These functions determine the global quantities
to be produced (production plan) to satisfy the commercial plan and to meet the profitability,
productivity, and delivery time objectives [Lolli et al., 2019]. Scholars often use hierarchical
frameworks to describe the process of production planning and scheduling at different levels
and planning horizons [Oluyisola et al., 2020]. Although the details for such framework differ in
different studies, the core content remains the same, with a division between the long‐term,
medium‐term, and short‐term [Bonney, 2000, Oluyisola et al., 2020, Garetti and Taisch, 1999,
Jacobs et al., 2011].

Figure 1 depicts such production planning and scheduling frameworks. The decision process in‐
cludes multiple sub‐processes (production planning, capacity planning, rough‐cut capacity plan‐
ning, ...). This decomposition was defined before the democratization of computers, and it
allowed humans to plan by hand. The first software for production planning and scheduling (like
enterprise resource planning (ERP) systems) followed this historical decomposition, and they pro‐
vide a set of functionality, where each functionality corresponds to one of these sub‐processes.
As this decomposition is sub‐optimal and inconvenient, the literature suggests integrating these
decisions with integrated processes (e.g., sales and operation planning), and new software fol‐
lowed (e.g., MRPII fosters the integration of procurement, production, and capacity planning).
With the increase of computation power and the development of optimization approaches, deci‐
sion support tools for production planning tend to integrate all the decisions and data at a given
planning level.
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Figure 1: The framework of the Production planning and scheduling system.

Looking at the different time horizon in Figure 1, the strategic level adopts a long‐term, ag‐
gregated view of manufacturing operations [Oluyisola et al., 2020]. The process begins with
sales and operations planning (S& OP) or aggregate planning, and also considers the master pro‐
duction scheduling (MPS). The tactical level considers medium‐term planning, which is called
materials resource planning (MRP). The operational level concerns day‐by‐day, shift‐by‐shift de‐
tailed scheduling, which is for the short‐term. We explain below the three functional levels of
production planning in detail.

Aggregate production planning balances the overall demand with the available supply re‐
sources (production, distribution, procurement, and finance). This process was suggested re‐
cently to unify plans traditionally produced independently by different departments (production,
distribution, procurement, and sales) [Pereira et al., 2020]. S&OP is performed monthly, at an
aggregated level (based on product family), and for a planning horizon of up to a few years
(since the planning horizon must include the resource (machine, workers) lead time) [Noroozi
and Wikner, 2017]. The input of S&OP includes demand data (volumes per product family per
planning period) as well as some metadata (such as forecast uncertainty) from demand man‐
agement (DM), and future available aggregate capacity from resource planning (RP) [Oluyisola
et al., 2020].

Master production scheduling (MPS) generates the production target for each end‐item by pe‐
riod (typically monthly), whereas S&OP considers product families. In recent production planning
systems, MPS integrates Rought‐Cut Capacity Planning (RCCP) [Rossi et al., 2017], where planners
check that the capacity of critical resources (bottleneck, labor, critical material) is sufficient to
meet the production target. If this is not the case, the planners may increase capacity through
overtime, temporary workers, subcontracting, or they may reduce the production target.

Materials requirements planning (MRP) combines the MPS records with the bill of materials
data and inventory data to calculate the requirements of the components and parts. Using the
results of MPS as the input, MRP makes recommendations on the weekly release replenishment
orders for materials for a planning horizon of a few months. Based on the production capabilities
and lead times which dictate the capacity requirements planning (CRP) process, it is possible
to release detailed material and capacity plans with a shorter time horizon (typically weekly)
[Oluyisola et al., 2020]. These plans are revised frequently, and the outputs of this stage are
production plans and replenishment orders for materials, which in turn are the inputs for the
operational stage [Dolgui and Prodhon, 2007].
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Figure 2: The overview of the production planning in Industry 4.0.

In recent years, the demand for customized products leads to various uncertainties in the supply
chain, like delays in deliveries and unpredictable demands. The current supply chain is charac‐
terized by high complexity, high flexibility, mass customization, dynamic conditions, and volatile
markets [Bonney, 2000]. In this context, companies must upgrade the production planning and
scheduling tools to respond to the dynamic and diversified market changes. Industry 4.0 tech‐
nologies can help to improve the production planning process. This includes the digital twin
(DT), cyber‐physical systems (CPS), internet of things (IoT), big data (BDA), analytics/artificial
intelligence (AI), and cloud manufacturing (CMg) [Ivanov and Dolgui, 2020, Ivanov et al., 2020].
Figure 2 presents the relationship between production planning and these frontier technologies.
Typically, IoT devices collect data from the production system to create a cyber‐physical sys‐
tem. This data can be used in predictive analytic and prescriptive analytic to support production
planning decisions. The rest of this section presents the current state of the art on the use of
industry 4.0 for production planning and their impact on classical prescriptive analytics tools for
planning such as simulation and optimization.

2.2 Internet of Things

IoT originated from radio frequency identification devices (RFIDs) proposed by MIT Auto‐ID Labs
in 1999 [Ashton et al., 2009]. IoT is the crucial basis for realizing cloud manufacturing, digital
twins, and big data analysis [Hwang et al., 2016]. The International Telecommunications Union
(ITU) defines IoT as intelligent connectivity for anything at anytime and anywhere [Atzori et al.,
2010].

The core function of IoT in production is to acquire real‐time data from the shop floor and
its environment. With IoT technologies, a product can be equipped with a uniquely identifi‐
able code, and it can be monitored and tracked by using sensors and wireless sensor networks
[Fang et al., 2016]. The key technologies of IoT are RFID and wireless communication technolo‐
gies. RFIDs enable tracking and distinguishing every single product. Wireless communication
technologies embedded in intelligent devices enable real‐time access to data on the status of
products. Finally, IoT collects various data (e.g., the information of sound, light, heat, elec‐
tricity, mechanics, chemistry, biology, and location) by global position system, infrared sensors,
laser scanner, gas sensors, and other devices [Tao et al.].

IoT is exploited industrially by supply chains at various levels and stages of manufacturing, such as
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Figure 3: BDA methods for the production planning.

logistics and inventory management, assembly lines, and after‐sales services [Fang et al., 2016].
IoT increases the accuracy and the flexibility of production planning by providing data from
physical systems [Bueno et al., 2020, Rauch et al., 2018]. For instance, [Tao et al., 2017, Zuo
et al., 2018] shows that RFID reduces the uncertainty of inventory shrinkage due to damage and
thieves. Typically, the data collected by IoT devices that can help production planning include
the demand of customers, the inventory level of materials, the capacity of the workshop, and the
status of suppliers. With the accurate collection of the data in real‐time, IoT helps production
planning become more automatic and intelligent. As a result, production planning can respond
quickly to various events such as machine breakdowns, urgent incoming customer orders, late
material delivery.

2.3 Big Data and Analytics applied in production planning

With the development of IoT, along with the growing number of software systems in the factory, a
massive amount of data is collected, and it can support decision‐making for production planning
[Bonney, 2000, Sun et al., 2019]. Based on the massive data collected by IoT, BDA/AI tools
predict the values of the input parameters required to plan the production such as demand,
production yield, supply/product lead times, process duration, production capacity [Lolli et al.,
2019, Gonzalez‐Vidal et al., 2019]. The processes to implement BDA/AI tools in production
planning include data collection and cleaning, predictive models, model training, validation, and
testing [Cadavid et al., 2020]. While BDA/AI tools and the amount of data improve the accuracy
of the forecast, a forecast will never be correct. Nevertheless, BDA/AI tools can compute the
variability of the parameters to account for the uncertainty. Accounting for uncertainty leads
to plans that are better implementable in practice. Figure 3 shows the position of BDAs to feed
parameters values and their probability distribution to optimization models. Despite the growing
interest in BDA/AI, the exploitation of big data in production planning is still immature compared
to other fields like IT, finance, and E‐commerce [Lamba and Singh, 2017]. The application of big
data and analytics requires a combination of understanding and knowledge about the domain and
the right BDA algorithms. Therefore, companies have collected massive data, but they cannot
currently get the best value of this data.

The choice of the data source is an important decision when training a machine learning (ML)
model. There are six main data sources relevant in data‐driven smart manufacturing [Sharp
et al., 2018, Tao et al., 2018b, Lu, 2014] :
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Table 1: Big Data Analytics based time estimation.

Paper Application Parameter BDA‐method If con‐
sider
plan‐
ning
model?

If compare
with traditional
method?

Cadavid et al.
[2020]

Food industries The proportion of pro‐
duction losses (Yield)

Linear model with stepwise selection,
regression tree, bagged tree, random
forest, gradient boosting, ridge regres‐
sion, lasso regression, elastic net, and
spline regression

No No

Meidan et al.
[2011]

Semiconductor
manufacturing

Cycle time Selective naive Bayesian classifier
(SNBC)

No No

Wang et al.
[2018]

Semiconductor
wafer fabrication
systems (SWFS)

Cycle time Density peak based radial basis function
network (DP‐RBFN)

No No

Mori and Ma‐
halec [2015]

Eyeglasses (a flow‐
shop manufactur‐
ing environment)

Lead time Hybrid Bayesian network No No

Gyulai et al.
[2018]

Steel production Production time Linear regression, regression tree, ran‐
dom forests, support‐vector regression

No Yes

Lingitz et al.
[2018]

Semiconductor
manufacturer

Lead time Random forest No No

Öztürk et al.
[2006]

Hypothetical man‐
ufacturing environ‐
ment (Simulation)

Lead time Regression tree No Yes

Alenezi et al.
[2008]

Multi‐resource,
multi‐product
systems

Order flowtimes Support vector regression No Yes

Schuh et al.
[2019]

Demonstration
Factory Aachen

Transition time A methodology for databased identify‐
ing influencing factors in order specific

No No

1. Management data: Historical data coming from the company’s information systems such
as the ERP systems, MES, Customer Relationship Management system (CRM), etc.

2. Equipment data: Data coming from IoT technologies.
3. User data: Consumer information collected from e‐commerce platforms, social media, etc.

This type of data also encompasses feedback given by workers or experts that will be used
to train the machine learning model.

4. Product data: This includes data originating from products or services either during the
production process or during their use by the final consumer.

5. Public data: Data available in public databases from universities, governments, or from
researchers.

We review below the literature on BDA tools for demand forecasting, before surveying the works
on time estimation. Demand forecasting is crucial for manufacturing companies since it provides
a basis for production planning. However, demand forecasting is difficult because customer
demands often fluctuate due to economic trends, market competition, etc [Kück and Freitag,
2021]. Compared to traditional methods, machine learning methods, such as artificial neural
networks (ANN) [Kourentzes, 2013, Kourentzes et al., 2014], support‐vector machines (SVM) [Lu,
2014, Villegas et al., 2018], bayesian networks (BNs), random forests, have shown promising
results in current studies, and they have surpassed in accuracy and performance the classic
methods. However, the application of these forecasting methods in production planning is still
not very wide. The planner’s experience is still the main source for demand forecasting and
production planning [Lorente‐Leyva and Alemany, 2020].BDA‐based time estimation is promising
to adjust different time‐related parameters to current working conditions.

The time estimation includes the prediction of lead time, cycle time, production time, and
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even the yield (when it is related to the time). Table 1 summarizes the literature on BDA‐based
methods to predict time‐related parameters in production planning, and it gives the application,
the predicted parameter, the method, whether or not the study consider simultaneously planning
and prediction, and if the paper compares their approach with classical methods. Only a few
works consider lead time prediction in the research community [Cadavid et al., 2020]. Lingitz
et al. [2018] compare the performance of different ML algorithms for the prediction of lead
times. However, the authors do not consider high variance processes. Meidan et al. [2011]
evaluate different ML algorithms, but they solely consider waiting times. Alenezi et al. [2008]
show that support vector machines perform better than neural networks to predict order flow
time. However merely simulated data and no real shop floor information was used. Finally, Schuh
et al. [2019] give a framework as well as a study on real industry data on how ML algorithms can
be used for the prediction of the transition time.

IoT technologies motivate the BDA applications with equipment and product data [Correa et al.,
2020, Hajjaji et al., 2021], but accessing IoT data in the planning system remains a challenge.
This issue can be addressed by creating digital twins, that collect IoT data scattered in various
systems, and automatically clean and integrate the data. While various studies provided tools
and methods to create digital twins [Tao et al., 2018a, Zheng et al., 2019, Lu et al., 2020],
this still represents a research challenge. Companies need to build general domain models to
integrate interactive platforms, as well as the data connection between the physical and virtual
systems.

2.4 Digital twin applied in production planning

The digital twin and the cyber‐physical systems can provide decision‐making support, dynamic
production planning, and real‐time visualization by building the virtual duplicate for the physical
system [Shao and Helu, 2020]. As a result, digital twins are powerful tools to support optimiza‐
tion, prediction, re‐planning, reporting and visibility within production planning. One challenge
for production planning tools in the context of CPS is to enhance its adaptability, automation,
and efficiency to deal with large‐scale problems and more complex systems. More specifically,
this section analyzes research of the digital twin applied in production planning in the context
of Industry 4.0.

Besides mathematical models, simulation models are one of the most used quantitative ap‐
proaches for modeling and decision‐making in production systems. In the Industry 4.0 context,
new paradigms arise to collect and store large amounts of data in real‐time and throughout pro‐
ductive and logistical operations, and they enabe the development of the digital twins concept
and related approaches [Agostino et al., 2020]. Shafto et al. [2010] gave one of the first public
definitions of a digital twin in 2010. While the essence of digital twins is simulation models, a
DT is very different from the traditional simulation model. The DT is multiphysics, multiscale,
probabilistic, and ultra‐fidel. A DT reflects the state of a corresponding twin in a timely manner
based on the historical data, real‐time sensor data, and physical model. With the development
of industry 4.0, the concept of DT has been expanded. Nowadays, DT includes not only the
simulation model but also the mathematical model and the data model. Furthermore, people
pay attention to the entire system of digital twins.

When it comes to DT, another important concept to mention is Cyber‐Physical System (CPS).
The cyber‐physical system is a set of embedded systems which communicate and interact with
each other in a communication network the data and information about each asset come from
the CPS on the shop floor [Geisberger and Broy, 2012]. CPS is the main source of data and
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Figure 4: The conceptual model for the digital twin.

information for the digital twin. In the context of production technologies, the CPS is called
a cyber‐physical production system (CPPS) [Weyrich et al., 2017]. The information and data
collected from CPPS can be used to create the digital twin for production planning. Generally,
the CPPS collects hardware, software, and real‐time information [Biesinger et al., 2019]. DTs
can support decision‐making in every stage or each level of production planning systems. For
aggregate production planning, DTs can achieve multi‐level data sharing, traceable data flows,
and integration with demand forecasting, inventory control, and MES/ERP systems [Yu et al.,
2018]. For MPS, DTs can support capabilities concerning real‐time and dynamic production plan‐
ning systems, with distributed and collaborative decision‐making through MES, MPS/ERP, and CPS
integration [Rossit et al., 2019]. In MRP, the DT model and CPS can help to achieve automatic
optimization, prediction, and re‐planning for MRP [Lin et al., 2018], and extending MRP with
real‐time calculations, early reports, traceability, and visibility[Shao and Helu, 2017].

There are many frameworks for the DT and CPS, but they share the same core elements shown
in Figure 4. Through the construction of the platform, the physical system, virtual system, and
information system can be interconnected with each other. In the initial stage of the research
about DTs, researchers mainly proposed the digital twin framework for entire supply chain man‐
agement issues. With the deepening of research, researchers began to focus on frameworks
dedicated to production planning and scheduling. However, as scheduling is more sensitive to
real‐time data, most works concern scheduling problems, and few studies discuss mid‐term and
long‐term production planning. Furthermore, with the proposed digital twin framework, there
are few quantitative analyses and case applications for production planning. Table 2 presents
papers that propose the DT frameworks, and it provides the author’s viewpoint, and the core
methods, and the considered application.

2.4.1 State of the art on data‐driven simulation for production planning

The essence of digital twins is simulation models. In production planning, discrete even sim‐
ulation models entities and the flow of events through time. Manufacturing systems are very
different from a company to the next, and it is not possible to create a generic simulation model
for manufacturing. The construction of simulation models for large‐scale production systems
requires knowledge from business experts, and it is time‐consuming. To reduce the time of
building simulation models, researchers have proposed a data‐driven method to automatically
build simulation models[Liu et al., 2019, Zhang et al., 2019b]. These tools can reduce the total
modelling time from several months to several weeks [Wang et al., 2021, Wy et al., 2011] and
they reduce errors in the modelling process.

Figure 5 shows how the data‐driven modeling and simulation technology works. First, we extract
original information from the data information systems and standardize these data. Second,
we further classify and associate the data to build a structured data model. Third, based on
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Table 2: Literature review about DT framworks.

Paper Application Viewpoint Core methods/focus Case study

Tao et al.
[2018a, 2019]

Product design Product Big data, Cyber and physical
convergence

The power transformer
and bicycle, no data

Ivanov et al.
[2019], Ivanov
and Dolgui
[2020]

Digital supply
chain twins

Supply chain Additive Manufacturing,
blockchain; Big Data Ana‐
lytics

No

Qi et al. [2019] Digital supply
chain twins

Supply chain Five‐dimension model,
enabling technologies,
enabling tools

No

Tao et al.
[2018b]

Smart Manufactur‐
ing

Manufacturing sys‐
tem

Lifecycle of manufacturing
data, framework

Silicon wafer production
line, figures of imple‐
mentation interface

Lu et al. [2020] Smart Manufactur‐
ing

Manufacturing sys‐
tem

Review,connotation, refer‐
ence model, applications
and research issues

No

Rossit et al.
[2019]

Smart Manufactur‐
ing

PPC Review,Cyber‐physical sys‐
tem

No

Agostino et al.
[2020]

Smart job shop PPC Cyber‐physical system Scheduling in a job shop
of a Brazilian supplier for
the automotive industry

Zhang et al.
[2019b]

Smart shop‐floor Workshop Cyber‐physical system Scheduling of the blisk
machining, data

Ding et al.
[2019]

Smart shop‐floor Workshop Cyber‐physical system, op‐
erations control

Interface of operations
control, no data

Figure 5: The process of data‐driven automatic modeling and simulation method.

original simulation objects, we personalize the internal logic and attributes of objects to build
the general simulation model library, which meets the needs of the particular industry. Fourth,
with the help of a resource generation engine, we can use the objects in the general model
library to generate the model layout quickly and automatically based on the layout data. Lastly,
driven by real‐time data, we can obtain a specific simulation operation model, and run it to get
simulation results.

In the simulation operation phase, when production demands or production layout change, the
traditional offline simulation takes several hours to update the data and adjust the model manu‐
ally. On the contrary data‐driven simulation update the data and adjust the model automatically
and quickly. Therefore, with the data‐driven automatic modeling and simulation technology,
production planning respond to uncertain events quickly. The data‐driven modelling and sim‐
ulation technology is also one of the important technologies in the digital twin [Zhang et al.,
2019a, Wang et al., 2021]. Within the scope of our knowledge, there is little literature on the
use of data‐driven automatic modeling and simulation technology in production planning.
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2.5 Optimization for the production planning in the industry 4.0 era

This section discusses prescriptive analytics methods, that combine machine learning and opti‐
mization to prescribes the best course of actions to optimize the plan.

2.5.1 Optimization model for production planning and scheduling

Optimization models for production planning problems involve inventory management and lot‐
sizing problems. The lot‐sizing problem aims at determining production and procurement quan‐
tities and their timing [Yano and Lee, 1995]. Research on production lot sizing dates to the
beginning of the 20th century, and since then, several problems have been addressed and a
large number of modelling approaches and algorithms have been proposed [Buschkühl et al.,
2010]. With the deepening of research, the focus of research on the lot‐sizing problem gradually
changed [Louly and Dolgui, 2013, Hnaien et al., 2016, Schemeleva et al., 2018, Tavaghof‐Gigloo
and Minner, 2020] from single‐product single‐period single‐machine systems to complex multi‐
product multi‐period multi‐machine systems [Cunha et al., 2018]. One of the most generic ver‐
sions of lot‐sizing problem for production planning is the multi‐echelon multi‐item capacitated
lot‐sizing problem (MMCLP). The MMCLP is to recommend when to produce as well as the sizes
of the production lots to minimize the expected total cost (including inventory holding costs,
fixed setup costs, unit production costs, extra capacity cost). These decisions are made based
on the demand, the bill of material, the production capacity, and the lead time.

Mathematical optimization is the most appropriate tool for production planning. The lot‐sizing
models have attracted a lot of work from the operation research community. Researchers pro‐
pose several reformulations, cuts, and solution algorithms such as Lagrangian Relaxation, cutting
planes, etc. Tempelmeier et al. [Tempelmeier and Helber, 1994, Tempelmeier, 2006] and Helber
et al.[Helber, 1995, Helber and Sahling, 2010] have done a series of studies about the decom‐
position approaches and Lagrangian Relaxation‐based heuristic algorithms for the multi‐level
capacitated lot‐sizing problem. This solution offers opportunities for the improvement of large
problem instances.

An important part of operation management is optimization of production schedules. There are a
large number of mathematical models that are used for scheduling optimization. Pinedo [Pinedo,
2018] gives an overview of most common scheduling models, including flow‐shop and job‐shop
models. To solve scheduling optimization problems a variety of approaches is used, including
constraint optimization and a selection of metahuristics. The overview of constraint optimiza‐
tion approaches for solving constraint problems is given in [Baptiste et al., 2001]. Bewoor et al.
[2018] used particle swarm optimization to optimize production schedule of the foundry. In many
cases, the hybrid approaches, that combine two or more algorithms, are used. Giacomello et al.
[2013] and Luna et al. [2019] used hybrid approaches to solve pump scheduling optimization.
Giacomello et al used the combination of linear programming with greedy algorithm and Luna
et al used a genetic algorithm with knowledge‐based mechanisms. Oliveira et al. [2011] used a
combination of genetic algorithm with mathematical programming to optimize scheduling prob‐
lem for the process industry. Babukartik and Dhavachelvan [2012] used ant colony optimization
and cuckoo search the job scheduling problem. The general overview of hybrid approaches used
for the scheduling problems with additional resource constraints can be found in [Pellerin et al.,
2020]. It should be noted, that majority of scheduling optimization papers consider problems
with only one optimization objective. [Mokhtari and Hasani, 2017] and [Soto et al., 2020] are
examples of works that examine multi‐objective scheduling problems.
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Mathematical models are usually constructed by researches themselves in attempts to describe
a selected problem, including planning and scheduling problems, as accurate as possible. The
model acquisition is using available data to construct constraint models automatically, with
minimal input from a researcher. This allows to significantly speed up the process of creating
adequate models for the industry.

The area of learning symbolic formulae and models can be divided in the following categories:

• Formula discovery which covers equation and conjecture discovery [Brence et al., 2021,
Larson and Cleemput, 2016, Aouchiche et al., 2005].

• Acquiring spreadsheet models from Excels tables or relational tables [Kolb et al., 2017,
Paramonov et al., 2017].

• Model acquisition of combinatorial problems in the form of a constraint model or a MIP
model [Beldiceanu and Simonis, 2016, Pawlak and Krawiec, 2017, Kumar et al., 2019a].

Additionally, the model seeker can generate models for some pure job‐shop problems. Only re‐
cent initial work deals with acquiring scheduling models from a log of a set of events [Senderovich
et al., 2019].

2.5.2 Simulation‐optimization approaches

Simulation methods mainly include discrete event simulation (DES), agent‐based simulation (ABS),
and system dynamic (SD) simulation. These models are commonly used for facility resource
planning, capacity planning, and job planning. Simulation can provide a detailed representa‐
tion of the production process, and it can simulate the execution of a policy. Most simulation‐
optimization approaches use optimization methods (e.g., local search, gradient descent, genetic
algorithms, … ) to optimize the input parameter of the simulation. In this context, the simula‐
tion is embedded in the optimization approach to evaluate the costs associated with the input
parameters. For instance, Lim et al. [2017] simulate the use of a dynamic inventory control
policy under various sources of uncertainties, and optimize the parameters of the policy with
a local search. Similarly, Liu et al. [2011] use a genetic algorithm that evaluates the expected
cost of a production plan through a simulation. A major drawback of such approaches is the
time‐consuming solution evaluation by simulation, especially when multiple replicates are re‐
quired to approximate the expected cost in an uncertain environment, or when the simulation
is very detailed. An approach to circumvent this issue is to build surrogate models [e.g., Osorio
and Bierlaire, 2013] to approximate the expected cost evaluated with the simulation. These
surrogate models are leaned with machine learning from past simulation, and they are used to
reduce the number of solutions evaluated through simulation.

The state‐of‐the‐art optimization approaches for lot‐sizing models commonly encountered in
production planning relies on mathematical model solved with commercial solvers. This ap‐
proach was also used in combination with simulation. In a simple framework, the simulation is
only used to complete the decisions made by the analytical optimization model. For instance,
Lim et al. [2006] use an optimization approach to set the capacity in the factory and a simulation
model to compute the production plan. A more advanced setting is the recursive optimization–
simulation approach, where the mathematical model is iteratively improved with the result of
the simulation. For instance, Jung et al. [2004] solves a deterministic lot‐sizing problem and
iteratively adjusts the safety stock after evaluation in simulation that accounts for uncertain
demand. This iterative approach was also recently applied for production planning in collab‐
orative assembly lines [Vieira et al., 2021], and for production planning in a wafer fabrication
production plant [Kim and Lee, 2016].
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For more information on simulation‐optimization approaches, the interested reader is referred
to Figueira and Almada‐Lobo [2014]. Overall, there is growing attention toward simulation op‐
timization approaches, but their applications in production planning remain scarce. We believe
that such approaches must be investigated, since a detailed simulation complement the opti‐
mization approaches, and ensure that the computed production plan is implementable on the
shop floor. Stochastic optimization can be seen as an integrated simulation and optimization
since it directly incorporates scenarios to describe the possible realization of uncertain param‐
eters within the optimization model.

2.5.3 Optimization under uncertainty

While the first studies on lot‐sizing considered that all parameters are known, in practice, none
of the production planning parameters can be forecasted perfectly. Uncertainty may be defined
as the difference between the amount of information required to perform a task and the amount
of information already possessed [Galbraith, 1973]. Over the years many researchers attempted
to formalize and model uncertainty in manufacturing systems [Sethi et al., 2002, Yano and Lee,
1995]. The production planning literature provides various approaches and models to cope with
different forms of uncertainty. The main three uncertain parameters in production planning are
demand, lead time, and capacity.

1. Demand uncertainty is critical for production planning, especially for manufacturers with
long production lead times [Aouam et al., 2018]. Demand uncertainty has various forms,
such as order size and due date.

2. The lead time refers to the number of periods between the placement of an order and its
arrival. In production planning, we may distinguish between delivery lead time and pro‐
duction lead time. The first refers to the time required by suppliers to deliver components,
whereas the second refers to the time between the release of an order to the shop floor
and its shipping date. Delivery lead time uncertainty is common in practice and it is due
to issues at the supplier production level or transport [Hnaien et al., 2016]. The reason
production lead times are uncertain involves several factors, such as inaccurate capacity
constraints modeling when building the production plan, machine breakdowns, stochastic
variations on operation processing times, etc [Aghezzaf et al., 2010]. Some studies suggest
modeling uncertain lead time with discrete support probability distribution built based on
statistical data .

3. Production capacity uncertainty refers to issues to ensure the shop floor can satisfy the
required production load. There may be uncertainty about the available resource capacity
due to machine breakdown or employee absenteeism, and uncertainty in the capacity
consumption for an operation due to variable process duration, or product quality if the
shop floor reworks or redoes bad quality parts. Another major source of problems is that
the optimization models for production planning only approximates the capacity roughly
to produce a feasible plan. In practice, even when a good scheduling tool is used, the
resources may have idle times. In addition, in flexible production plants, it is difficult
to estimate which resource will perform each task before doing the production schedule.
While capacity uncertainty leads to infeasible plans, very few works consider production
planning under capacity uncertainty, when compared with the cases of demand and lead
time uncertainty.

4. Yield uncertainty occurs when bad quality parts cannot be re‐work or replaced by a new
one. This situation occurs for operation with long processing time such as aluminum cast‐
ing, or in multi‐echelon systems, where producing an additional part is impossible when
the components are not available. Yield uncertainty is also common in the disassembly
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of end‐of‐life items since the quality of components is only observed once the item is
disassembled.

The classical approaches compute the lot sizes under the assumption that all parameters are
deterministic, whereas safety stock, safety lead times, and safety capacities are computed sep‐
arately to hedge against the uncertainty. With the improvement of computation power and
new development in optimization approach, it is nowadays possible to integrate the uncertainty
directly in the optimization problem with stochastic optimization (SO) approach [Spall, 2005].
That is, random variables appear in the formulation of the optimization problem itself, which in‐
volves random objective functions or random constraints. Consequently, the research recently
moved from the initial deterministic to non‐deterministic lot‐sizing models [Tavaghof‐Gigloo
and Minner, 2020]. Many studies consider a single uncertainty parameter [Yano and Lee, 1995,
Zikopoulos, 2017, Kroer et al., 2018, Afsar et al., 2020], but more scholars have paid attention
to the consideration of multiple uncertain parameters in recent years. For instance, demand
and lead time are sometimes considered together[Tang et al., 2019, Köchel and Thiem, 2011,
Song and Dinwoodie, 2008]. Finally, a large variety of methods were proposed to solve lot‐sizing
problems, such as fuzzy logic, scenario‐based stochastic optimization, robust optimization, and
game theory [Su, 2017, Cunha et al., 2018, Carvalho et al., 2018, Simon et al., 2021, Zarei et al.,
2021].

2.6 Limitation and future direction

Based on this literature review, we identified several gaps in the literature regarding, and they
represent the main contribution to research of the WP4 of ASSISTANT.

Future research direction regarding data collection and integration for production planning and
scheduling:

1. The integration of information from different systems remains a challenge because data
from heterogeneous sources must be reconciled. Other difficulties include the use of
different standards in information systems and data interaction. Solutions to overcome
this integration issue include service‐oriented architectures [Niknejad et al., 2020] and
blockchain [Korpela et al., 2017] for the flexibility and security of data transmission, and
ontologies Kumar et al. [2019b] to map different data models. Nevertheless, future work
is required to facilitate the integration of the information collected from IoT devices,
software, and between information systems from different shop floors. This requires the
development of data format standards, protocols for system interaction, and data man‐
agement procedures that ensure safety and reliability. There is also a need to develop
tools to automatically clean the data, and to detect and fix incoherent information (e.g.,
the level of inventory in the ERP and computed from RFID).

2. As IoT collects a large amount of data and interconnects the virtual and actual systems, it
leads to large and complex information systems with heavy memory load and slow calcula‐
tion. Reducing the complexity of the resulting system is an important research direction.

Future research direction in predictive analytics for production planning and scheduling.

1. Existing research mainly focuses on demand forecasting, and they only seek to forecast a
single parameter. Few works consider machine learning approaches to predict the joint
distribution of multiple parameters, whereas production planning parameters may be re‐
lated (e.g., the demand and the cycle time).

2. More research is required to provide the best way to apply generic machine learning tools
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in the production planning context. The research of BDA in the Manufacturing system
is still at the preliminary stage. Some researchers study how to use BDA in the supply
chain. But they only test different BDA methods, and they do not provide a breakthrough
in forecasting models.

3. Research on the optimization of production planning model based on BDA. Few papers fur‐
ther consider how to use the forecast results to optimize the production planning model,
and what kind of quantitative impact will it have. In the research about production plan‐
ning, no one compares the difference between BDA based production planning methods
and traditional production planning methods

Future research direction in prescriptive analytics for production planning.

1. Solving the complex lot‐sizing problem under uncertainty is hard, especially in the dy‐
namic decision framework, where the production setups are updated as the information
unfolds. The existing works are limited to small‐scale instances in a simple environment
[Thevenin et al., b]. To solve large instances, with multi‐echelon BOM a large planning
horizon, heuristic algorithms must be provided. For instance, Thevenin et al. [a] showed
that the two‐stage approximation provides a good heuristic to the static‐dynamic decision
framework when the demand is uncertain. However, more research is needed to solve a
large time horizon, and the use of a fix‐and‐optimize approach possible research direction.
In addition, methods must be developed to handle the dynamic decision framework.

2. While most approach assume the probability is known, this will never be true in practice,
and the distribution can only be estimated. Distributionally robust optimization is an inter‐
esting class of approach that optimize for the expected cost of the worst case distribution
[Zhang et al., 2016], and its application to production planning must be further explored.

3. The data‐driven model acquisition is an interesting area of research for production planning
and scheduling. Regarding scheduling, as every shop floor is different, model acquisition
removes the need to create a model for each workshop or whenever the shop floor changes.
Only recent initial work deals with acquiring scheduling models from a log of a set of
events. The model acquisition could also be used to improve the accuracy of planning by
communication with a detailed simulation.

3 Position of Work Package 4 in ASSISTANT

According to the requirement engineering procedure, this section defines the scope of WP4 and
its interactions with other tools in ASSISTANT (called system context). Work package 4 aims to
provide the intelligent digital twin for production planning and scheduling. Fig 6 below highlights
the scope of WP4 from the ASSISTANT’s concept picture [Beldiceanu et al., 2021].

The production planning intelligent digital twin aims to manage the capacity and the supply
requirement. This twin suggests the production quantities per period for each item, as well as
capacity adjustment (shift length, temporary worker, ...), and deliveries from suppliers. Within
ASSISTANT, classical approaches for planning will be enhanced to account for uncertainties and
to learn functions that represent the capacity constraints in complex shop floors thanks to simu‐
lation. The production scheduling intelligent digital twin takes as input the production require‐
ments from production planning, and it assigns a resource to each operation and sequences the
operation on the resources. The intelligent digital twin for production planning and scheduling
interacts with the other components developed in ASSISTANT:

• The Data Fabric (WP6) offers the data sharing mechanisms among the different decision
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Figure 6: Scope of WP4 within the ASSISTANT concept [Beldiceanu et al., 2021]

levels (Process, Production, Schedule, Execution). It cleans, aggregates, stores and inte‐
grates into domain models all data that can be consumed by the intelligent digital twins.
In addition, the data fabric provides data analytic tools useful to the digital twin for pro‐
duction planning and scheduling. For instance, tools to learn probability distribution from
historical data.

• The Digital Twin for Execution (DTE)which will be implemented within WP5, is responsible
for the shopfloor control level. DTE requires information from the Process Planning and the
Production Scheduling levels. Operation’s details, bill of processes, initial task allocation
among the available resources, and production sequence are some of the required data.
A feedback channel will be provided also from DTE for updating the execution progress
and triggering the replanning functionalities of Process and Production digital twins. DTE
deployment aspects are presented in deliverable D5.1 of ASSISTANT.

• The Digital twin for process planning (DTPP) will be developed in WP3. The DTPP helps
engineers to design their production processes. This twin considers a single production
line, and it selects the best processes, resources, and tools to process a part on the line.
While the process planning intelligent digital twin assigns resources (machines/equipment)
to tasks, it makes very different decisions from the production scheduling module. The
intelligent digital twin for scheduling selects the machine (among the machines present in
the factory) to perform each operation, but a machine may be the entire production line.
In addition, an operation is not the same concept in scheduling and process planning. More
precisely, an operation in the schedule refers to the processing of a lot by the production
line, and scheduling does not look at the detailed task assignment inside of the production
line. The processing time of an operation in scheduling is the duration required to process
an entire lot on the assembly line, and it depends on the takt time of the line (which is
decided in process planning).

Figure 7 shows the data flow within ASSISTANT for the data consumed by the intelligent digital
twin for production planning and scheduling. The data fabric is the central data provider in
ASSISTANT. We follow a service‐oriented architecture, and each module of the intelligent twin
for production planning and scheduling access and store the data in the data fabric via REST APIs.
The data from external software (ERP, MES, CRM, HRM) is fed to the data fabric via some use
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Figure 7: Data flow within ASSISTANT for the data consumed by WP4

case specific connectors developed in WP7, and it is accessible through the domain model of the
data fabric. As some data require to change granularity to be consumed by a specific module,
the data fabric provides plugins to translate the data in the right format. Once the data is
produced, it is translated in the right format, and it is available in the data fabric. For instance,
as explained earlier, the computation of the duration of a job in the scheduler requires multipling
the lot size decided in the production planner by the takt time computed in the process planner.
Note that the same data may come from different sources, and the data fabric provides tools
for data aggregation. Following the chain of the planning, the tools developed in WP4 consume
data produced by the tools developed DTPP and DTE.

Figure 8: Exemplary Process Plan as the Main Result of Process Planning

The DTPP provides the process plans that are translated further into inputs for production plan‐
ning and scheduling. They consists of all processes and their sequences required to produce and
monitor a product within a given production system and selected resources. Fig. 8 provides an
exemplary process plan which serves as the basis for process planning and scheduling. Within
WP4, the bill of processes, the process duration of a lot, the detailed resource/tools available
on the shop floor (machines, workers, or production lines, ... ) required to process a lot are
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extracted using the process plan. The translation of the process plans towards information re‐
quested by the intelligent twin for production planning and scheduling takes place via the data
fabric.

DTE monitors the execution of the operations on the manufacturing line with IoT devices. The
data collected during the execution are used (after translation) within the intelligent digital
twin for production planning and scheduling. This data includes actual resources available,
the inventory level, and historical data required to predict future parameter values: process
duration, records on machine break down and their duration, records on product defects. For
instance, this data helps to improve the accuracy of the simulation or scheduling tool by providing
precise process duration from the shop floor. In addition, the data recorded by WP5 can be
translated into schedules that were implemented in the past, and this data is consumed by the
model acquisition for scheduling. Similarly, WP4 provides through the data fabric the production
schedule to DTE, and this production schedule defines the item production sequence on each
resource.

Finally, DTE will suggest the user re‐scheduling the production if the schedule is outdated (e.g.,
a machine is broken), and the production planning module wills suggest the user modifying the
process plan if the production capacity cannot be respected.

4 Requirements of the intelligent digital twins for production plan‐
ning and scheduling

This section lists the requirements for the intelligent digital twins for production planning and
production scheduling. Following the requirement engineering procedure given in the appendix,
we conducted interviews with the three use cases of ASSISTANT to elicit the requirement. In
addition, we had multiple discussions to get an in‐depth understanding of the shop floor of two
use cases that will validate our solution: the compressor production plant of Atlas Copco, and
the blade and vane production shop floor of Siemens Energy). This section provides a summary
of the interview results, the description of the two production shop floors, and the requirements
for the modules developed in WP4.

4.1 Interview results

The interviews with the three industrial partners were synchronized with T3.1, T5.1, and T6.1,
and the question list is available in the online supplement. We provide below a summary of the
discussion.

Current situation: Among the three use cases, only PSA is currently using software to optimize
production planning and scheduling. At Atlas Copco and Siemens Energy, production planning is
currently done manually (with Excel). The production plan is done in a daily planning meeting.
Based on the relevant information (delivered components at the beginning of the day, demand,
...), the planners decide what to produce. At Siemens Energy, a simulation is also available, that
takes the excel sheet as input, and it helps the user validates the plan and schedule. Similarly,
there is no tool for scheduling in Atlas Copco nor Siemens Energy, the shop floor simply follows
a FIFO rule. While FIFO is far from being optimal in a complex production environment, this rule
is easy to implement on the shop floor. A more sophisticated production schedule would require
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equipment for the workers to follow on the shop floor, for instance, a screen in the shop to tell
the user what to do next.

Problem with the current tools: Atlas Copco and Siemens Energy reported that this manual
decision‐making process is cumbersome because production planning is complex and must ac‐
count for the availability of the parts, the amount of work in progress, the customer orders to
fill today, the availability of operators and resources, ... Often, the plan is outdated after a
few hours due to unforeseen events. For instance, if a component is not delivered on time the
production cannot take place, or when an urgent order is released by a customer. In such a sit‐
uation, the human planner does the firefighting to update the plan but alone (not in a meeting).
Atlas Copco reported they would like to go for fully automated production planning and schedul‐
ing, whereas Siemens Energy made it clear that they only want a tool to suggest decisions to a
planner whereas the planner makes the actual decision. PSA mentioned that their production
planning tools are difficult to use because they are too far from their shop floor (they do not
represent their shop floor precisely). Another difficulty is to transfer the production schedule
to the shop floor since currently, the production planner gives the information through the cell
phone. Finally, all three use cases reported issues regarding the integration between the shop
floor and the software. For instance, at Siemens Energy, the MES and the simulation are not
connected. Atlas Copco mentions some issues regarding the lack of integration with the data.
For instance, a production cell might put all its energy to complete a sub‐assembly on time, and
they realize later that the next production step cannot be performed because some components
required for assembly were not delivered by the suppliers.

Fears regarding the use of AI for production planning and scheduling: The use cases reported
no fear from the end‐user regarding the use of AI for production planning and scheduling, as long
as a human is responsible for the ultimate decision (AI only suggest a production plan). On the
contrary, production planning problems are too complex to solve by hand. The planners under‐
stand that an AI can investigate much more possible plans than a human, and the management
is happy because the shop floor will be more efficient. Regarding the workers on the shop floor,
they will not see the difference between a plan created by an AI or by a human. The only possi‐
ble bad consequence to consider is that the workload of the workers may increase. In addition,
PSA highlighted the importance to ensure the safety of the network and software.

Expectation regarding the use of AI for production planning and scheduling: The three use
cases mention the importance of providing accurate production plans. The production plans must
be implementable on the shop floor with the available resources (materials, machines, workers,
. . .). Atlas Copco highlighted the importance to be able to select the optimization target (e.g.,
costs versus meeting due dates), as the planner may emphasize different targets depending on
the situation of the shop floor. Finally, Atlas Copco and PSA mentioned the importance of a tool
that can help to deal with and react to unforeseen undesirable events.

Management of uncertain events: All three use cases reported issues with uncertainties on
the shop floor. The first issue reported by the three use cases are problems related to machine
breakdowns, because they lead to major disruptions of the operations on the shop floor, and
they may have critical consequences. In addition, PSA and Atlas Copco reported issues with the
deliveries of parts from suppliers. Finally, Atlas Copco reported issues with the quality of the
produced part.
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4.2 Use case description

This section introduces the two use cases provided by the industry partners of the consortium.
Section 4.2.1 details the Atlas Copco use case regarding production planning and scheduling.
Section 4.2.2 gives the Siemens Energy use case. Both use cases are the base to derive the
requirements in section 4.3‐ 4.7.

4.2.1 Atlas Copco use case

The Atlas Copco (AC) use case focuses on the Airtec plant that produces rotors for the compres‐
sors. AC does not sell components, only full compressors, so the Airtec plant has only internal
customers. AC operates with a make‐to‐stock strategy because the lead times are long (3‐5
weeks). For a few products, the lead time is acceptable, and they are made to order. The shop
floor is large (approx. 200 m × 200m) with 116 machines. The Airtec plant produces 120 dif‐
ferent rotors, leading to 300 different compressor variants, by using different casings and other
parts. The weight and size of a rotor vary a lot (300g to 300 kg). The shop floor runs 24h per
day (3 shifts). AC can also run the production during the weekend to overcome difficulties or to
increase capacity.

Production steps: Figure 9 represents the production steps to create the rotors.

Figure 9: Atlas Copco’s production steps.

The production starts from forged steel parts or cast‐iron parts. Then, each step of the routing
removes some material from the casted pieces bought from a supplier. The following process
steps are required to produce a rotor:

• Turning removes most of the material.
• Milling shapes the rough profile
• Shaft grinding finishes the shafts
• Profile grinding finishes the complex profiles
• Finishing operations are similar to grinding. They are more accurate but a lot slower (so
remove as much material as possible on the previous steps).

• Assembly with other components includes components that do not impact the quality and
are therefore bought from suppliers.

The routing varies depending on the item to produce. The input material may be cast or forged
iron. Cast Iron are closer to the end‐item (it requires less production step, and it is cheaper to
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produce), but for some end‐items, forged iron is not strong enough. Each operation lasts 10‐20
minutes. Processing time for one part depend on the complexity and the size of the part. Every
detail in the rotor takes time. The shop floor is divided into several lines, and the lines may use
different technologies. The bottleneck depends on the technology.

Machines/resources: Each of the production steps is executed on different CNC machines, and
in each step, there can be several parallel machines. There are operators to check the quality,
to make sure there are enough raw materials and pallets, and to do the changeovers/setups.
However, the loading‐unloading is fully automated, and an operator can attend several machines.
Besides, operators are cross‐trained able to work on several machines. For the operator, AC has
a skill/qualification matrix per operator. For the moment, it contains only yes/no, but they
are working towards something more specific (70% qualification, experience, …). The skills are
related to the quality check because the operator must know what must be changed to go back to
spec. There is currently no KPI regarding the optimal use of an operator. It would be interesting
to rotate, so they stay fresh in memorizing how to do a step.

Material flow: When changing the type of rotor to process, a setup (15 min‐3h) must be per‐
formed on the machines. This setup time depends on the production sequence on each machine.
Therefore, the production is done per batch of (50‐200 items) of the same type. It takes 2 or 3
shifts per batch. There are buffers between steps, but a batch can overlap between 1 step to
the next. The operator moves a pallet from one machine to the next as soon as it is finished,
but the cycle times are not all equal. In some rare cases, a batch is split (in time or over several
machines), and they must be recombined afterward. If AC splits a batch, the finished part goes
to the warehouse and all the elements are in the same emplacement in the stock (any male rotor
match with any female). Nevertheless, splitting the batch leads to a changeover and must be
avoided.

Uncertainties: The main sources of uncertainties on the shop floor are demand and production
capacity:

• Yield uncertainty: Sometimes there are bad parts, and this decreases the batch size. It
is not possible to add a new part in the batch ‐ AC would have to wait too much for the
delivery of the casted material. Nevertheless, this is not a big issue since the proportion
of bad parts is below 1%.

• Demand uncertainty: The demand is known quite long in advance. AC has a 3‐month
prediction of the demand, but this prediction is not very accurate (30% deviation)

• Lead time uncertainty: Suppliers are reliable (they deliver on time, and there is no prob‐
lem with the quality of components). However, production lead time is a problem. The
customer would like a 1‐hour accuracy, but in reality, the lead time can vary from 1‐3 days
late.

• Capacity uncertainty: The number of machine breakdowns depends on the technology/age
of the machine. Roughly there is a breakdown once a week per machine group with a 2
days downtime. If the production plan consumes 70/80% of the available capacity, the
shop floor can adapt to unforeseen events. However, when the demand is high, the shop
floor runs close to 100% of the capacity, and it cannot recover from a machine breakdown.
AC tries to move toward predictive maintenance to avoid problems

Scheduling currently: Scheduling and production planning are done manually (with Excel).
There is a daily production planning meeting. Based on the delivered components at the begin‐
ning of the day, the planners decide what to produce. Production planning is complex and must
account for the availability of part/ Work in process/ Customer orders to fill today/ availability
of operator/resource. The current replenishment strategy uses constant lot size (revised once a
year). To hedge against uncertainties, AC uses safety stock, and safety lead time. There is also
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a safety process duration. The process duration includes some margin to account for possible
deviation. Therefore, you can finish a batch quicker than plan. The schedule follows a FIFO
rule. FIFO is easy to implement on the shop floor, it is easy for the operators to follow on the
shop floor. If a different production planning approach is used, a tool must be used to inform,
such as screen in the shop to look at the screen and know what to do. Often, the schedule
is outdated after a few hours due to unforeseen events (for instance, the bearing did not get
delivered on time, and the schedule must change asap). In such a situation, the same planner
does the firefighting but alone (not in a meeting).

Computation speed: When the schedule must be changed, the strategy is to finish the current
batch before doing something else. Therefore, the software can take 1 hour for computation.

Objectives: The main objective is to deliver on time. In addition, it is important to minimize
throughput time, the lead time, and to reduce the work in progress (because the shop floor is
full). AC aims for cost optimization and an increase in agility and flexibility.

4.2.2 Siemens Energy use case

The selected Siemens Energy (SE) use case comprises three workshops: coating, drilling, com‐
pletion, and testing. Each of these workshops contains several production steps as shown in 10,
11, and 12. To simplify the use case, a subset consisting only of the production steps has been
selected shown in yellow in the figures.

Production steps: An operation may require different tools, and these tools will be different
for different blades. This includes for instance the tools to fix the blades on the machines.
Except for testing, the operation in each resource group requires a single step. However, multiple
routings are possible to create a blade or a vane. For instance, Figure 11 shows that the process of
eroding followed by drilling can be replaced by only drilling (but this second alternative requires
more drilling time). Similarly, Figure 10 shows that the inner coating can be performed with a
black coating machine or a white coating machine, but the outer coating is always done with a
white coating machine. Not all machines in each resource group are eligible to perform all jobs.
Some machines are not technologically able to perform a task. In addition, some machines might
be technologically able to perform a task but have never been tested and thus these machines
would not be eligible. The process duration for an operation depends on the machine. It is quite
stable and does not vary much.

Machines/resources: Each of these production steps can be performed by several parallel ma‐
chines which we call a resource group. In each resource group, the machines can be different.
Especially for coating, machines can use different technologies (black and white coating tech‐
nologies). In total, the shop floor includes between 30 and 50 machines. The completion step
includes heat treatment, and this machine (furnace) processes several blades simultaneously in
a batch. All the other machines process a single operation at a time. The machines require
operators with specific qualifications for processing. For instance, workers with specific skills
are required for the setup. The use case involves 7 workers split over 3 worker’s profiles (laser
expert, coating expert, and quality expert), and 5 qualifications. Note that one operator can
operate multiple machines at the same time. Sometimes the workers are the “bottleneck”, and
no worker is available to perform a task. They are currently scheduling with FIFO. If a different
scheduling strategy is used, they will adhere to the schedule mostly, and they will not change
the sequence of tasks.
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Figure 10: Siemens Energy’s coating shop floor organization.

Figure 11: Siemens Energy’s drilling shop floor organization.

Material flow: The processing of the operation on a machine requires a setup times that does
not depend on the production sequence. This setup time is performed for each individual blade
and not per lot. For instance, smaller and bigger blades that need to be fixed on a support at very
small tolerance. We will assume that the necessary tools are available for each machine, such
as lifting devices, cleaning tools, and fixtures to position the blades and vanes within the corre‐
sponding machines. Currently, the shop floor runs the operations per batch, and only complete
load elements (containing all relevant blades/vanes) are moved to the next buffer. Operators
process the items in batches because of customer needs. All blades from the same customer
order line item are batched together. However, SE would like to investigate the possibility to
do partial preemption (e.g. 50 %) or even single single‐piece flows.

Uncertainty: The main source of uncertainty for the use case is machine breakdowns. Machine
breakdowns do not happen often, but they can have a big impact. SE will provide a failure rate
and a failure duration.

Scheduling currently : As described in D7.1 SE plans currently manually, but a a simulation is
available to validate the plan. The schedule follows a FIFO approach.

Computation speed: Computation speed is not an issue for SE, and the software may take
several hours to suggest a plan.
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Figure 12: Siemens Energy’s testing shop floor organization.

Objectives: Each product to be manufactured has a due date, it can be a finished or an un‐
finished material. The production orders are may have different priorities (not all due date
are equal) based on the business type/order type. In addition, the production must respect the
arrival date of the raw materials required for production. In the production planning system cur‐
rently in place at Siemens Energy, the explosion of the BOM structure provides the due dates for
all subsequent manufacturing operations, by reading the routings (processes and process steps).
Depending on the scenario, the simulation has either to validate an existing plan (created by
human planners), or the simulation has to calculate the best possible start date for all exploded
load elements. Nevertheless, these due date on lower level BOM levels are not so important in
a day‐to‐day basis as the customer requested due dates for products to be delivered.

4.3 Requirements on automated production planning

High‐level requirement: To remain competitive, companies must operate with efficient produc‐
tion plans to reduce the lead times they offer to their customers, deliver on time, and reduce
the operating costs (inventory, changeover costs, ...). Companies that have adopted mass cus‐
tomization are facing difficulties to provide efficient production plans. First, the number of
end‐items leads to a large number of components (and thus a large number of suppliers), and
complex production systems with hundreds of resources. In such circumstances, manually pro‐
duced plans are often of poor quality, and the human planner needs a tool to help them create
the production plan.

The tool provided in WP4 must be generic enough to be applicable in a wide range of environ‐
ments. In particular, it must apply to the complex situations encountered in the two use cases
(see Section 4.2, and D7.1), with alternative operations, capacity restrictions, multi‐echelon
production system.

RP.1 Generic model M24

Category Functional requirement

Description

The production planning model must be generic enough to plan in a wide range of manufacturing environments.
Following interviews with use case providers, and in‐depth analysis of their operations, we must ensure the
model can deal with the flexible bill of materials, alternative components, resource capacity constraints, and
multi‐echelon assembly system.

Reason
Thanks to the aggregation of items and resources, production planning models are generic enough to handle
various situations. To facilitate the use of the production planning modules in the industry, the automated
production planning functionality must be applicable in a wide range of manufacturing environments.

The use cases reported various issues related to uncertainty (see section 4.2). While uncertainty
in production planning may concern demand, lead time, capacity, and yield, we will restrict our
study to the most critical parameters for our use case (see section 4.2): the demand and the ca‐
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pacity. Note that machine breakdowns or employee absenteeism (a major source of uncertainty
reported by the use cases) lead to capacity uncertainty at the production planning level.

RP.2 Uncertainties M24

Category Functional requirement

Description
The planning tool must rely on stochastic or robust optimization to hedge against uncertainty. To account for
the dynamic decision process, the tool may employ adjustable robust optimization or multi‐stage stochastic
optimization. Following the discussion with use case providers, we focus on capacity and demand uncertainty.

Reason

Today’s manufacturing environment is highly uncertain due to the large number of end‐items, it is often difficult
to predict precisely the demand, the supplier lead times, production yield, and production quality, …. Often
the production plans are outdated after a few hours, and this may have large consequences on the performance
of the company.

An AI component for planning cannot account for the details of the shop floor, because it plans
for long planning horizons. Indeed, it would be extremely difficult to create an efficient plan
accounting for each specific task to perform over a planning horizon of several years (e.g., D7.1
reports that simple computation of the performance of a plan takes 900 seconds in a detailed
simulation). More importantly, the precise demand is unknown for the entire planning horizon
(as reported by both use cases during our discussion), and looking at specific tasks based on the
wrong forecast would lead to wrong decisions. Consequently, the AI component must consider
aggregated items, resources, and periods. The production is planned with a granularity of a day
or a week. The items and resources are aggregated into families. Nevertheless, this aggregation
leads to error [Taal and Wortmann, 1997]. For instance, the resource consumption is computed
for each resource group, and production planning approaches do not allocate specific resources
to each operation. This aggregation prevents managing the capacity accurately. Consequently,
a production plan may not respect the production capacity once implemented in practice. The
discussion with our use cases showed the importance and the difficulty to manage the capacity
properly (see D7.1) to create valid plans, that are implementable on the shop floor. Therefore,
we will investigate how to learn the capacity constraints in the mathematical model through
machine learning based on the output of a precise data‐driven simulation.

RP.3 Learn from lower‐level tools M24

Category Functional requirement

Description

Despite the item and resource aggregation required to make long‐term decisions, the tool should be able to
represent the available production capacity precisely. These capacity constraints can be learned by analysing
the detailed simulation run output. More precisely, the simulation can calculate the execution of the plan
based on given product, process, resource, load data, such as start dates, make‐or‐buy ratios, shift models.
The output of the simulation tells the actual capacity consumption for a given production plan, and based on
an analysis of several simulation run, we will investigate the possibility to predict the required capacity given
the production quantities. This learning can be conducted in an iterative manner, where the planner provides
a different plan in each iteration.

Reason

A valid production plan must make the best possible use of the resources, but it must be implementable on the
shop floor. Therefore the automated production planning tool should be able to account precisely for production
capacity. Manufacturing shop floors are becoming complex, with hundreds of resources able to perform a wide
range of tasks. The simple capacity computations based on average resource consumption per item are not
adapted anymore.

The software cannot be responsible for manufacturing decisions. The planner must remain in
charge, and he must be able to drive the creation of the plan depending on the situation. Our
use cases requested (see D7.1, and based on the discussion we had during the interviews) the
possibility to control the tool and to change the parameters depending on the encountered
situation. For instance, in some situations, the planner wants to ensure on‐time delivery, in
other situations, it is preferable to use the capacity as best as possible.
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RP.6 Manual production planning and scheduling M18

Category Human‐centric requirement

Description The human planners should be able to add filtering constraints on the main KPIs to modify the output of the
automatic planner.

Reason The production manager must remain in charge.

Finally, based on D7.1 and the discussion we had during interviews the computation time for
planning is not critical. For instance, SE would accept a response time of 12h, while AC requires
less than 1h of computations.

RP.4 Fast computations M30

Category Performance Requirement

Description
The automated production planning functionality should provide a plan in a reasonable amount of time. Follow‐
ing discussion with use cases, the computation time must not exceed an hour. Ideally, the tool should provide
a preliminary result every few minutes.

Reason Users want tools with fast response time.

4.4 Requirements on automated scheduling

High‐level requirement: Operating a complex production system requires scheduling efficiency.
Most companies operate with simple rules because better scheduling approaches require a lot of
manual efforts, to improve the operation of the shop floor, the industry must adopt automated
scheduling tools. This tool is also explicitly requested by use cases in D7.1.

RSc.1 Model acquisition M24

Category Functional

Description

WP4 must provide a tool to optimize production schedule. A production schedule affects the tasks to the
production resources, and it gives the production sequence on each resource. The tool will include automated
schedule generation functionality. The tool will be provided for the flexible job shop scheduling problem (FJSP)
because this production environment is generic enough to encompass most situation encountered in manufac‐
turing industries.

Reason To automate the generation of production schedule.

Scheduling must account for the specific business rule of the shop floor. As each shop floor is dif‐
ferent and in constant evolution, the design of an automated scheduling tool requires optimiza‐
tion experts to design a shop floor specific decision model. To facilitate the use of automated
scheduling approaches, the software should be able to self‐adapt to specificity and changes in
the shop floor. There we will investigate the possibility to acquire the model automatically from
data.

RSc.1 Model acquisition M24

Category Functional

Description

The automated scheduling tool should be usable in a wide range of manufacturing environments with limited
expert work. In other words, the software should be able to self‐adapt to the specificity and the changes in
the shop floor through communication with the digital twin. Each of these adaptions must be validated by a
user because autonomous decision‐making capability is not in sync with German regulations when humans are
involved in the manufacturing process.

Reason Automatic generation of scheuling models for optimization.

Similarly to the planner, the scheduler must have reasonable computation time, and be control‐
lable through a graphical interface.
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RSc.2 Fast computations M30

Category Performance Requirement

Description The automated production planning functionality should provide a plan in a reasonable amount of time. Fol‐
lowing discussion with use case providers, the computation time must not be above 1h.

Reason Users want tools with fast response time.

RSc.3 Manual production scheduling M18

Category Human‐centric requirement

Description The human planners should be able to add filtering constraints on the main KPIs to modify the output of the
automatic scheduler.

Reason The computer software cannot be responsible for manufacturing decisions. The planner must remain in charge,
and he must be able to drive the creation of the schedule depending on the situation.

4.5 Requirement for simulation

High‐level requirement: The development of a detailed simulation of the shop floor is an im‐
portant requirement for WP4 (see D7.1). First, the simulation can validate decisions made by
the automated planner and the automated scheduler, by including all the details of the shop
floor. The simulation will play an important role in the development of the learning mechanism
of the algorithm developed in WP4. The tools will first learn to plan/schedule appropriately by
communicating with the simulation, before being used on the shop floor. Therefore, WP4 must
provide a detailed material flow simulation to compute the feasibility and the performance of a
production plan. To ensure the accuracy of the simulation and shorten the development costs.
The simulation must be data‐driven.

RSim.1 Semi‐automatic model generation M18

Category Functional Requirement

Description

The simulation module must allow for a (semi‐)automatic simulation model generation from the static pro‐
duction plant data (as specified in the domain model). Manual steps should be limited to a minimum, e.g.
moving components on the graphical factory layout sheet of the simulation tool to get a better overview and
understanding of the plant.

Reason The domain model in the data fabric is the agreed source of truth in ASSISTANT.

The simulation must be able to simulate the production plan and the production schedule gen‐
erated by AI components.

RSim.3 Simulation scenario in static decision framework M18

Category Functional Requirement

Description
A simulation scenario provides a value for each decision to make. In a static decision framework, the simulation
module must allow for an automatic simulation scenario generation from decisions made by the production
planning and scheduling module over the entire planning horizon (as specified in the domain model).

Reason Validate plans and schedules

RSim.6 Scenario results M18

Category Functional Requirement

Description
The simulation module must return the results as specified by the domain model. Where different business
targets are available, condensed results according to the selected business targets need to be provided, e.g.
by calculating weighted sums.

Reason Simulation results contain a huge amount of data. Only a subset of this data is relevant for the decision process.
The assessment of the result data may also differ depending on the selected business target.

As described earlier, managing uncertain event is important in Industry 4.0 production systems.
To ensure the production plan and the production schedule remain feasible in an uncertain en‐
vironment, the simulation must account for the variation of the parameters.
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RSim.2 Uncertainty M18

Category Functional Requirement

Description
Where required, the simulation module must use the functions of the the simulation tool to account for varia‐
tions. If not available, the simulation module itself must offer the possibility to evaluate different stochastic
experiments.

Reason Robust decisions are required.

Methods to plan in a stochastic dynamic environment produce policies that tell the decision to
make depending on the state of the production shop and its environment. Such approaches do
not provide a fixed plan for the next month as the shop floor manager are used to work with. To
validate the policy, the user must simulate its execution.

RSim.4 Simulation scenario in dynamic decision framework M18

Category Functional Requirement

Description

A simulation scenario provides a value for each uncertain parameter and each decision to make. In a dynamic
decision framework, the decisions for period t+1 are made once the value of the uncertain parameter up to
period t is revealed. The simulation module must allow for an automatic simulation scenario generation from
the dynamic production planning and scheduling decisions. In other words, the simulation must provide the
state value to the production planning module, and receive the decision to execute in each period.

Reason
An agile factory should update its production plan when new information is available. In a dynamic decision
framework, given the updated information available in each period, dynamic production planning and scheduling
decisions are selected in each period by the production planning and scheduling modules or by user interaction.

Similarly to the planner and the scheduler, the simulation must have reasonable computation
time, and be controllable through a graphical interface.

RSim.5 Scenario execution M18

Category Functional Requirement

Description The simulation module must offer an interface to execute and cancel a simulation run.

Reason The simulation will be triggered by the production planning and scheduling modules or by user interaction.

RSim.8 Fast computations M18

Category Performance Requirement

Description The simulation module must run the applied simulation tool in the fastest mode (provided by the tool).

Reason Fast response time is required.

4.6 Requirements on data

High‐level requirement: The intelligent digital twin requires a precise and update digital pic‐
ture of the factory which is built from heterogeneous data sources. To facilitate access to this
data and the integration of the tools developed in WP4 on the shop floor, the data must be
integrated into a domain model. We give below all detailed requirements for the data fabric
and the domain model for production management.

The tools of WP4 require data from various sources (ERP, MES, supplier data, ...), whose data
models are likely very different (different scope, terminology, units, ...). For instance, our
discussions with AC showed the difficulty to collect data across various software. To facilitate
the integration of the tool in the manufacturing environment, a domain model must be provided
to access the data from a single interface.
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RD.1 Data integration M18

Category Functional Requirement

Description
The domain model must provide a unified access to heterogeneous data. The tool of WP4 will have a standard
domain model interface to access all required data. This domain model must reuse existing standard as much
as possible.

Reason Integration of heterogeneous data sources

Given the strong connection between the domain models of the different WPs and industry cases,
a common format and tooling for domain modelling is identified as a requirement of ASSISTANT.
The tools for production planning and scheduling require different levels of aggregation for the
data. For instance, production planning considers the global capacity per resource, whereas
scheduling requires knowing the available specific resources and their status.

RD.2 Data flow M18

Category Functional Requirement

Description
The domain model must provide tools/rules to automatically aggregate data (define resource group, . . .). For
instance, scheduling accounts for each machine individually, whereas production planning uses the global ca‐
pacity per resource group as input.

Reason Communication between the modules of WP4.

The decision support tool must see what decisions must be taken, and how to evaluate the
quality of these decisions. The user must also have a clear understanding of the KPIs used by
the optimizer for transparency.

RD.6 Design for optimization M18

Category Functional Requirement

Description The domain model should differentiate KPIs, decisions variables, constraints, and parameters.

Reason the domain model must tags the parameters to facilitate decision support.

Production planning and scheduling require an estimate of future values for some parameters
(demand, delivery lead times, . . . ). The data fabric must facilitate the prediction of these
parameters.

RD.3 Predictive analytic M18

Category Functional Requirement

Description
The domain model must recognize known versus unknown data. The unknown data have not been discovered
yet, and their values must be predicted. The intelligent twin for production planning and scheduling must
provide machine learning tools to predict the values of these parameters based on historical data.

Reason prediction of parameters

The use case providers mentioned the importance to have a reliable production plan able to cope
with various sources of uncertainties. To account for possible uncertain events, the tool must
be able to characterize the uncertainty as best as possible (through a probability distribution or
an uncertainty set).

RD.4 Handling probabilistic data M24

Category Functional Requirement

Description

The tools must identify unknown parameters with large variation, and they must allow the user to infer a
probability distribution or a range of values for parameters that vary significantly. Therefore, the domain
model must provide an interface for domain experts to build learn a probability distribution or an uncertainty
set based on the historical data.

Reason Characterize the uncertainty as best as possible (through a probability distribution or an uncertainty set).

ASSISTANT fosters a human centric approach, and the user must also be able to manipulate the
data.
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RD.5 User friendly M12

Category Functional Requirement

Description The human production planers must be able to understand, extend, and modify the domain model.

Reason The domain model provides the data interface for tools of WP4. To reduce the development costs of tools
provided within WP4, manufacturing experts should be able to setup their domain model.

4.7 Ethical requirements

Even though the present document covers the technical requirements established for WP4, the
first revision of ethical considerations was performed to have a broad understanding of the
impact the developed tools could have on the manufacturing users. This initial evaluation is
subject to the analyses performed by WP2 (tasks explicitly T2.1 and T2.2). A first analysis
performed over WP4 in relation to risk conditions for human security and oversight resulted in a
clear establishment that there is NO impact on fundamental human rights, human well‐being, or
democracy within this WP. Therefore most of the ethical considerations driven by WP4 should be
focused on technical robustness, privacy and data governance, transparency, and accountability.
(based on the Trustworthy requirements.). Lawful local concerns will be carried out by the
system as system constraints (e.g. overwork and shifts maximum time), so the AI component
will manage regulations.

RE.1 Respect work regulations for the employee M30

Category Functional requirement

Description
The tools that make decision regarding employee scheduling must ensure work regulation are properly incorpo‐
rated in the models. This include for instance the respect of the maximum amount of work hours per weeks,
vacations, sick leaves, or other regulatory conditions that can impact the legal frameworks.

Reason The AI components must respect work regulations.

The AI components of WP4 may allow the user to prioritize a customer or a supplier over another,
and this could be seen as unfair to the clients or the supplier. This point is not seen as an
issue, as the AI component will be fair to the manufacturer. In practice, the implementation
of tools at specific manufacturers may require anonymous client/suppliers (represented with
numbers), but we will not enforce this restriction within ASSISTANT. The decision is left to the
manufacturer who implements the tool within its factory. Therefore, any fairness concern that
could arise in relation to production scheduling (WP4 outputs) would be managed externally to
the AI by users (given override options). Furthermore, since tools will not use any sensitive
information that could consider diversity or discriminatory concerns, scheduling preferences
would follow users current trends and not societal biases. Nevertheless, as production planning
and scheduling decisions have a critical impact on the factory economic performance, we must
identify a responsible for AI components failure.

RE.2 Ethical requirement M8

Category Human‐centric requirement

Description

For each module (simulation, model acquisition, optimization for scheduling, automatic planner, see section 5)
developed within WP4 must be assigned one responsible for each cause of failure directly linked to algorithmic
failing. Such failures are situations where the AI component does not provide a result, or it provides a result
of poor quality. Within WP4, such a failure occurs when the production plan or the production schedule is
not implementable on the shop floor, or when they are associated with bad KPIs values. Furthermore a clear
establishment of responsibility on: (1) Poorly constructed algorithm, (2) data is of bad quality, (3) human use
the tool poorly. Will be done

Reason Compliance with Accountability.

Another critical concern regarding ethics is the security of the data. Fake information provided
to the systems may lead to the wrong decisions and considerable economical impact. While
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the security of the data itself will be ensured within the data fabric, each module of WP4 must
ensure secure communication with the data fabric and control over the access to the module.
Furthermore, UI interfaces will be limited to organize information and interact with information
(not modify it) and, therefore, access to data managing would not be performed throughout
any component within WP4. Finally, as checked in the following requirement, Further security
considerations will be set in place.

RE.3 Security of the data M36

Category Ethical requirement

Description Each module developed within WP4 must require to log in, and state‐of‐the‐art protocols must be used to ensure
secure communication with the data fabric.

Reason Ensure the safety of the data and safe communication with the data fabric.

Running the production planning and scheduling tools on corrupted data (by accident or due to
an attack) may have a large impact on the economical performance of the company.Ideally, the
tool must be robust against attack or misinformation.

RE.4 Robustness of the AI component M30

Category Ethical requirement

Description Participant of WP4 may investigate how to identify if a user set a parameter/data to a wrong value. What could
be the effect on the system?

Reason Ensure safety against attack and misinformation.

Following transparency requirements (linked with the communication), the user must be in‐
formed that they interact with an AI component. This consideration could be necessary if the
information is sent directly to the shop floor to be used, and therefore, any inadequacy of the
tasks requested (given by know‐how considerations) could help to mitigate erroneous outcomes
(and prevail failing conditions).

RE.5 Inform user on the interaction with an AI component M18

Category Ethical requirement

Description The plans and schedules created entirely or partly with an AI‐systemmust be tagged to inform they were created
by an AI. In addition, the chatbots must inform the user that they are interacting with an AI.

Reason Comply with regulation of Transparency and Accountability

To ensure accountability and transparency, all decisions suggested by the AI will be tagged. This
will allow to evaluate, in case of need, users preferences and modifications in case the best
options derived by the AI are not chosen to be implemented.

RE.6 Log decisions M36

Category Ethical Requirement

Description
The systems must log the suggested decision, and the decisions validated by the user for 6 months. The system
must log all input & output data of all simulation runs, production planning run, and scheduling run for a
specified period (e.g., 6 months). Also any additional logging data by the used simulation tool shall be stored.

Reason Accountability

To comply with transparency, the learning process for the model acquisition in scheduling and
planning must be reproducible, and the system must be able to produce the information that
led to a specific output of the AI component.

RE.6 Tag data used for training, prediction, and optimization M36

Category Ethical Requirement

Description
A tag must be associated with each data used during the learning of a specific AI component, during the building
of the model, or during prediction.

Reason Ensure we can re‐evaluate the algorithms in case it is required, this allows reproducing failure to improve and
explaining the decisions.
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To comply with human agency and oversight, the AI components should not make autonomous
decisions that may have an impact on the workers. Therefore a manual planning interface must
be defined for the user to control the AI component and validate any decision before actuation.

RE.7 Human validation ‐

Category Human‐centric requirement

Description The tools developed in WP4 cannot transfer production plans or production schedule for actuation unless they
are validated by a user.

Reason The computer software cannot be responsible for manufacturing decisions. The planner must remain in charge.

For the explainability of the decisions, the user should be able to visualize the decision model:
the decision variables, the objective functions, and the constraints. This implies that users
would be able to understand the decisions made

RE.8 Model visualization M18

Category Ethical Requirement

Description

The user must be able to visualize the acquired model. The visualization must clearly explain how the tool
makes decisions (with the variables, constraints, and objective function) so an optimization expert can explain
why the tool makes a particular decision. Ideally, the tool should also be able to explain the decisions to a
non‐expert. For instance, the tools may explain which variables, constraints affected the most decisions. The
tools may also explain why another decision was not selected. For instance, the user input a plan, the system
tells why the solution was not selected (which constraints are violated, which cost increase).

Reason Explainable

Finally, the tool must comply with the following requirement from the GDPR. Nevertheless, this
requirement concerns the input data to the tool, and use case providers will be responsible to
identify the data, and use the anonymization tools provided in the data fabric.

RE.9 Model visualization ‐

Category Ethical Requirement

Description
The data used, collected, or stored may not include the name of a user or a worker. They must be anonymized.
In addition, the data should not allow the identification of a single person and should link towards personal
information.

Reason GDPR compliance

5 Description of the tools and research agenda

WP4 aims to develop an intelligent digital twin for production planning and scheduling. As de‐
scribed in Section 3, the tool will also be usable in a digital shadow, but the user will be respon‐
sible to provide accurate data and to communicate the schedule to the shop‐floor. To provide
explainable models (see requirement RE.9), the AI components for planning and scheduling will
rely on symbolic AI, constraint programming, and mixed‐integer programming. These approaches
proved their efficiency for planning and scheduling, but they provide explainable models with
clear objective functions and constraints. Fig 13 shows the modules developed within WP4 to
create an intelligent twin for production planning and scheduling, and these components are
described below

Automated planner: This tool helps the user to create a production plan. The production plan
can be created at two granularity levels. For material requirement planning, the plan gives the
production quantity for all items (end‐item and items in progress) to release on the shop floor
in each period, the number of components to orders to suppliers, the amount of production
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Figure 13: Modules developed within WP4

subcontracted, and the extra capacity required for each resource. This tool is used every week
or every day depending on the need of the company, and these decisions are made to ensure
the demand is met on time, the inventory level is minimized (which lead to a reduction of the
production lead time), and the setup times and costs are reduced. The automated planner takes
as input the demand per period, the available capacity, the bill of material, and various costs.
For master planning, the production plan provides the number of end items to produce, the
number of resources and employees to acquire/hire, and the subcontracting quantities. Master
planning is done every month or every quarter depending on the company. The tool must hedge
against uncertainties, and the production plan must be robust to machine break down, late
component deliveries, and changes in demand ...

AI‐based probability distribution learner: This tool helps the user understand the behavior of
scheduling/production planning parameters that vary significantly, and whose variations have a
lot of impact on the optimal plan/schedule. The resulting joint probability distribution explain
to the user how to reduce the variability of a parameter. These probability distribution is also
an input of the robust planner and the simulation. The user selects a parameter to analyze and
the concept that may explain the value of this parameter. The tool will output the conditional
probability distribution of the parameter. For instance, the user may want to analyze the avail‐
able production capacity on a resource group. He can select the parameters that explain the
value such as the last maintenance on the resource, the production load, or the operator. The
tool will compute a conditional probability distribution for the available capacity based on the
available historical data.

Optimization for scheduler: This tool helps the user to create a production schedule. The
scheduler takes as input a set of jobs, where each job corresponds to a production lot released
by the planner (i.e., a production lot for a given item). To ensure adherence to the plan, each
job has a release date and a due date to respect. A job requires several operations to perform on
different resource groups, and the duration of each operation depends on the quantity released
by the planner. The scheduler assigns the resources (machines, operators, ...) to the operations,
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and it sequences the operations on the machines, thus each operation is given a start and end
time. The scheduler optimizer is used several times per day (as soon as the current schedule
is outdated), it takes as input the current status of the factory and the production plan, and it
outputs a production schedule.

Model acquisition: The scheduling optimization model models must account for various industry‐
specific constraints, and facilitate the development and maintenance of the scheduling model.
The model acquisition tool create a constraint programming model, that is later user by the
optimizer to suggest schedules. The model acquisition tool is run during the first use of the
scheduler and every time a major change occurs on the shop floor (new machine, new product,
...). The model acquisition tool takes as input the data the user selected as relevant and sched‐
ules implemented in the past. Then it generates a constraint programming model that describes
the constraints the schedule must satisfy to be feasible.

Domain model: The digital twin should provide an accurate picture of the shop floor with all
information required to manage the operations. Therefore, the digital twin includes a domain
model that extends the generic domain model of WP6 with the specific data structure required
by the intelligent digital twin for planning and the intelligent digital twin for scheduling. It
integrates data from various sources and aggregates the data at the right level for the simulation,
the scheduler, and the planner. The domain model presents a rich data model understandable
by the end‐user. Thus, the user can access all manufacturing data through the domain model.
The domain model is also the main data source for all modules of WP4, and it is the main
communication bridge between tools developed in other work packages. More information on
the data flow is given in the next section.

Simulator: A discrete‐event simulation allows the user to analyze the impact of a production
plan or a production schedule, and it can be used in a dynamic environment to evaluate policies.
The simulation is used several times a day to analyze the decision made by the user (eventually
with the help of the automated planner or optimization for scheduling). The simulation provides
a very detailed view of the shop floor, and it allows computing the start and end date of each
task, various KPIs, and to recognize the bottlenecks. The classical input data for the simulation is
the production plan (quantity released per period and due date, number of hour of each resource
type available per period), or the production plan and production schedule (quantity released
per period and due date, precise resource available in each period, affectation of the operations
to the machines, and sequencing of the operations). When used in a dynamic environment, the
simulation evaluates a policy, and it communicates with the production planning tool directly
to access the decision in each period based on the latest information on the status of the shop
floor (demand, machine break down, supply delivery lead time, …).

Production manager UI: The production manager UI provides the interfaces for the user to in‐
teract with the tools developed in WP4. This interface includes three elements: the generative
design interface; the model visualization interface; and chatbots. First, the generative design
interface allows the decision‐maker to interact with the automated production planner and pro‐
duction scheduler. The user can specify the characteristics of the solution he wants to create:
provide upper or lower bound for the KPIs, assign weights to the optimization objectives, enter
additional constraints on the plan/schedule. Second, the user interface provides a model visu‐
alization tool that allows communication between the model acquisition tool and the business
expert. The user can visualize the acquired model for full transparency on how the AI module
makes decisions, the user can also manually modify some constraints if they were not correct.
The model acquisition module may also ask the user to confirm some constraints. Finally, we
will investigate the use of a chatbot for the user to query the domain model.
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Figure 14: Use case diagram

To fulfill requirement RE.2, a responsible for component failure due to poorly constructed algo‐
rithm is assigned to each module: T4.3 leader for the simulation; T4.4 leader for the AI‐based
probability learner and automatic planner; T4.5 leader for the model acquisition and the op‐
timization for the scheduler. The responsible will follow the procedure developed in WP2 to
ensure the robustness of their AI components. In particular, the responsible will benchmark the
tools on synthetic and realist data sets. These tests will clarify the conditions under which the
algorithms function properly and their success rate. To fulfill requirement RE.4, the responsible
may investigate which variables or data provide the most risk to make the AI component fail to
monitor this data closely. They might also evaluate the consequence of a wrong decision for the
manufacturing system.

These modules are developed and delivered continuously during the project: D4.2 (M18) pro‐
vides the domain model and simulation; D4.3 (M24) provides the predictive analytic elements:
the model acquisition and the AI‐based probability learner; D4.4 (M30) provides advanced opti‐
mization for automated decisions: the automatic planner and optimization for the scheduler.

The rest of this chapter describes the tools in detail. The sections precisely explain the novelty
that will be developed within the ASSISTANT project. These novelties rely on (1) the learning of
constraint within the automated planner and automated scheduler through an actor‐critic com‐
munication with the simulator; (2) the integration of stochastic or robust optimization approach
to deal with uncertainties. Section 5.1 and 5.2 provide a use case diagram and the information
flow between the different modules. Section 5.3 describes the generative design interface and
model visualization developed in T4.2. Section 5.4 describes the digital twin, including model
the domain model and simulation developed in task T4.3. Section 5.5.2 describes the produc‐
tion planning module developed in T4.4, and it explains how the AI‐based probability distribution
learning is used within WP4. Note that a generic AI‐based probability learning module is devel‐
oped within WP6 (as it also useful for WP3 and 5). Finally, Section 5.6.2 describes the model
acquisition, and scheduling optimization developed in T4.5.
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5.1 Use case scenarios

Figure 14 provides the use case diagram of the intelligent digital twins for production planning
and scheduling. The roles and the responsibilities of the employees involved in production plan‐
ning and scheduling decisions differ from one company to the next. The above use case diagram
is based on the roles identified by Siemens Energy (see D7.1):

• Budget planner: Employee who plans the manufacturing volume to run the manufacturing
operations of the defined scope from a technical perspective for a given time frame, most
cases for a fiscal year.

• Commercial manager: Employee who reviews the technical manufacturing plan and as‐
signs a corresponding financial budget to run the manufacturing operations of the defined
scope for a given time frame, most cases for a fiscal year.

• Production planner: Employee who is overseeing the execution of production orders from
a customer/order management perspective.

• Shop floor planner: Employee who plans manufacturing operations for a smaller subset
of the defined scope, usually for a shorter time frame, e.g., for a month, a week or for a
specific shift.

• Worker: Employee who carries out the different tasks on the shop floor. The workers must
get a convenient work schedule, and know what tasks he or she will work on.

The functionalities of the described roles are:

• Capacity planning: Decision on the s the shift model, qualification of existing machines
within the resource group. Under normal conditions, temporary workers might be hired
for given time spans.

• Due date quotation: Commit to a delivery date for each customer order.
• Adjust Capacity: Adjust the number of shifts per week or change the length of the work
shift, for instance with extra hours during the weekend. Define the make‐or‐buy ratio for
each period.

• Place orders to suppliers: Place raw material and components orders to suppliers (which
supplier, when to deliver, what quantity).

• Create a production plan: plan the production (how much to produce in each period),
compute the expected inventory costs, the setup costs, and the probability of shortages.

• Create/update a production schedule: manage the detailed operations on the shop floor.
What operation is performed in each moment and with which resources?

• Simulate: simulate the decision (shift length, number of qualified resources, production
load per period, task assignment to resources, task sequence on the resources, outsourcing,
… ) on the digital replicate of the factory.

• Follow the production schedule: Visualize the production schedule to be implemented on
the shop floor. Note that WP4 will not provide tools to update the schedule in real‐time
(this is the goal of WP5)

5.2 Information flow

Figure 15 shows the data flow between the different modules of WP4. Note that all the data is
transferred through the data fabric (and its domain model), and there is no direct data trans‐
ferred between tools. The only direct communication between the module of WP4 aims to trigger
the run of a module that responds to tell computations are done, and the data is available in
the domain model. The data fabric provides APIs to store and retrieve data; these APIs insert
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Figure 15: data flow in WP4

and retrieve the data from the domain model. The data fabric will provide tools to transform
the data when required. For instance, the production planner provides a set of production lots
and depending on the factory, these production lots will become one or multiple jobs in the
scheduler (one per unit of item). Transferring all data through the data fabric will ensure ac‐
countability since it creates logs of all the computation results. We will use JSON to exchange
data from and to the data fabric, but each module may provide additional input/output data
formats (CSV, XML, …). To fulfill requirement RE.3, secure communication between the tools
will be ensured with REST API, the communication will be encrypted with public keys protocols,
and the API will require authentication. Table 3 details the specific data communicated between
the modules.
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5.3 Production Manager UI

The user interface includes three components: a generative design interface for production
planning and scheduling, a model visualization tool, and a chatbots. All three components are
described below.

Generative design: The user must be in control of their production planning and scheduling
tools to not see it as a black box [Taal and Wortmann, 1997]. To fulfill requirements RP.6 and
RSc.3, we will provide generative design interfaces, where the user can iteratively precise the
values of the KPIs he wants, and the tool provides a solution within these targets. The KPIs
at the production planning level may include the inventory costs, changeover costs, backorder
costs, outsourcing cost, extra resource capacity cost, number of setups, percentage of on‐time
delivery, level of inventory. The KPIs at the scheduling level may include the due date adherence,
the total setup time, and the flow time. The generative design interface includes:

• The possibility to precise a range for the KPIs, and to weigh or rank the optimization ob‐
jectives. For instance, for scheduling, the user can ask for a solution with at most X jobs
completed late, or at most X change over on resource X , …. For planning, the user can
input the maximum amount of stock, ….

• The possibility to visualize the resulting production plan (production quantity for all items
(end‐item and items in progress) to release on the shop floor in each period, the number
of components to order by suppliers, the amount of production subcontracted, and extra
capacity required for each resource) or the production schedule (Gantt charts). Note that
there seems to be a clear lack of a scalable and open‐source Gantt chart library that could
be reused. Therefore, we will develop the visualization only (not interactive) version for
the scheduling aspect of WP4. The result is an SVG‐based diagram.

• Tools to visualize the search space in a plot (with KPI scores as plot axes).
• Tools to show differences and similarities between two solutions. More precisely, the user
is able to select the solution he or she wants to compare, and the tool highlights the main
differences for the user to make a choice.

• Tools for solution visualization across a large number of scenarios of uncertain parameters
(demand, lead time, capacity, process duration, and production yield). This will include
the possibility to visualize the performance of the plan on the worst case, average, Xth

percentile scenario.

To fulfill requirement RE.5 the production manager UI will inform that the plans and schedules
are generated with the help of an AI.

Model acquisition visualization: We will provide tools to visualize the optimization model
learned automatically from data. Some constraints have a natural visualization, and they will be
displayed on the Gantt chart of the solution (precedence constraints, or cumulative constraints).
Other constraints will be displayed in a textual format (constraint, formula) referring to the at‐
tributes of the concepts in the domain model (e.g., name of the attribute, subset of attributes
with specific values, etc.).

Chatbot: Finally, we will investigate the value of a chatbot to answer operation management
questions (e.g., when will the order X be scheduled?) related to production planning and schedul‐
ing. The chatbot will be based on predefined questions, and an AI system will match natural
language questions to the predefined questions. Next, the tool will generate a SPARQL request
to send to the domain model. Finally, the SPARQL answer will be translated to natural language.
As a result, the chatbot will be able to communicate with the user thanks to the rich semantics
included in the domain model. Note that the chatbot will not be implemented from scratch, we
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Component Suggested technology

Graphical User Interface HTML, CSS, Java script, Angular (maybe), JSON, Java (maybe)

Visualization of constraints in model
acquisition & model execution CP‐Viz [Simonis et al., 2010], SVG, PDF, JavaFX, Java

Chatbot: Language Recognition and
generation Python, RASA

Chatbot: Query Interface Python SPARQL, OWL

Table 4: Technologies used in the production manager UI

will use existing tools, and tests their use for production planning and scheduling applications.
To fulfill requirement RE.5, the chatbot will inform it is an AI when communicating with the
user.

5.4 Digital twin

While so far data‐based approaches and AI methods dominate in the production operation phase,
simulations are currently primarily used in design and engineering. The vision of the digital twin
refers to a virtual representation and a description of a component, product, system, infrastruc‐
ture, or process by a set of well‐aligned, descriptive, and executable models. It is a semantically
linked collection of all relevant digital artifacts, including design and engineering data, opera‐
tional data, and behavioral descriptions. It exists and evolves along the whole life cycle. The
digital twin integrates the currently available and commonly required information and knowledge
and is synchronized with the real twin if it exists. A simulation model represents the planned
real system and calculates its properties or validates its behavior. With the advancement of sim‐
ulation technology and the available computing power, these simulation models become more
detailed and cover more aspects of the system under development. They thus represent a dig‐
ital twin of the planned system, which leads to an extended understanding of the term digital
twin [Rosen et al., 2019]. Note that we differentiate here the classical digital twin, and the
intelligent digital twin proposed in assistant that include AI components for prescriptive and
predictive analytics. WP6 will provide data acquisition, cleaning, storage and integration in the
domain model. This section cover the extension of domain model for planning and scheduling,
and the simulation.

5.4.1 Domain model

With the rise of industry 4.0 technologies, a large amount of data is permanently collected
by various sensors, connected machines, systems, and digital models. Due to the evolution‐
ary development of most factories – i.e. new machines and new technologies are permanently
integrated into the legacy systems or existing structures of the production system – the data
landscape in production systems is very heterogeneous and come from very different sources,
such as MES, ERP, SCADA, machine data. Additionally, the data can appear in different formats,
e.g., XML, JSON, CSV, text files, distinguishing between structured, semi‐structured, or non‐
structured data. This data must be related to the respective data generators to create a domain
model that enables and empower analytical components such as machine learning algorithms,
simulations, and optimization algorithms. The domain model is a representation of all concepts
and their relations in the domain that are useful for production planning and scheduling, for
example, orders, resources, production steps, order, cycle time, etc., thus forming an ontology
of the production domain. Optimally, each instance within the production, be it a machine, a
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product, a process, a material, or a worker, can be mapped and related to each other.

The domain model must have certain aspects to serve the decision support systems on the shop
floor. As described in [Listl et al., 2020], the use of different layers and applications in decision
support requires reusable, standardized, flexible, and extensible means for data exchange be‐
tween them. This is an essential prerequisite for ensuring that decision‐support solutions do not
have to be rebuilt entirely for each factory but that certain parts can be reused across projects ‐
i.e., following a library or framework approach. A generic domain model will be defined within
WP6 along with various functionality required by WP3‐6. In WP4, this generic domain model is
extended with concepts specific to production planning, and specific to scheduling. In a later
stage, the resulting model can be further extended with company‐specific knowledge. Figure
16 shows an example of this organization.

Figure 16: Organization of the domain model

The domain model is the access point to the data for WP4 production planning and scheduling
tools, and it plays five major roles:

1. It is a mean to understand the system, and what information on the system is available
(what resources, products, etc. exist?).

2. It provides unified access to heterogeneous data. The tools of WP4 require data from
various sources (ERP, MES, supplier data, …), whose data models are likely very different
(different scope, terminology, units, …). This features provides requirement RD.1.

3. Next to data, the domain model provides access to models, simulations, correlations be‐
tween parameters, experimental setups, etc., and how they have been used in the past.

4. Modelling of known vs unknown data is another part of the domain model. It will allow
indicating data that have not been discovered yet, and whose value must be predicted.
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Component Suggested technology

Domain model representation OWL, RDF

Domain model tooling Protégé

Domain model query language SPARQL

Domain model query interface HTTP endpoint, REST API

Tooling for link between domain model and data Ontop

Table 5: Technologies used to provide a domain model and the associated tools

The prediction (done outside of the domain model) can be done based on historical data,
or based on the data acquired after simulation runs. The AI‐based probability learner is
described more precisely in Section 5.5.1. This tool can learn the value of parameters with
classical machine learning approaches, but it can also learn a distribution of parameters
that vary significantly. For instance, the tool could return an empirical distribution based
on historical data collected in a similar situation as the forecast. As the empirical data
will over‐fit, we will explore AI‐based approaches to obtain distributions such as Bayesian
networks. In some situations, historical data might not allow estimating the future value
of the parameters precisely (because this data might be missing, or because the shop floor
changed and historical data are not relevant). In such a case, the possible value for the
parameter might be estimated more roughly through an uncertainty set (a range of values).
This feature provides requirements RD.3 and RD.4.

5. The tools for production planning and scheduling require different levels of abstraction
for the data. For instance, production planning considers the global capacity per resource
group, whereas scheduling accounts for each machine individually. The domain model will
provide tools/rules to automatically link different levels of abstraction (define resource
group, …). This features provide requirement RD.2.

The domain model differentiates the known parameters, stochastic parameters, decision vari‐
ables, and KPIs. These features will facilitate the model acquisition, and it provides requirement
RD.6. As specified in requirements ?? and RE.6, the domain model will store the output of the
simulation, scheduling, and production planning runs. The data model must include the parame‐
ter of the run, and whether the decision was validated by the user or not. To fulfill requirement
RE.7, access to decisions non validated by human will be restricted to the tools of WP4 only, the
data fabric may only transfer to the real‐time controller the last validated decision. Finally, to
comply with requirement RE.6 for each request to access the data, the domain model will store
the reason (training, prediction, optimization) of the access along with the identifier of the tool
and time.

Users will be able to query the knowledge graph in a unified way using a query language at
the abstraction level of the knowledge domain. This means that there is no need to know the
technical storage details of all data. Furthermore, tooling will be provided to edit the knowledge
graph, for adding new types of data, information, and knowledge. For example, when a new
sensor is added to a robot, the user must be able to make its metadata and data accessible in
the domain model, thus adding its information and link to the data storage. These features fulfil
requirement RD.5.

5.4.2 Simulation

To analyze the impact of the decisions on the shop floor, we will develop a discrete‐event sim‐
ulation. In material flow simulation, the logistics inside a production system are modeled to
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analyze the capacity of the factory and the production planning of the production with respect
to efficiency, utilization, and in‐time delivery, also considering failure situations. This simula‐
tion is able to take the output of production planning and compute its impact on the shop floor.
To ensure fast computation (as required by RSim.8) over a large production planning horizon,
the simulation performs the operational level decisions based on prioritization rules.

Data driven simulation The setup of these models usually requires a huge effort for both the
data acquisition as well as the model generation itself [Rosen et al., 2020]. Using the data from
the domain model, the simulation models should be generated automatically based on the fac‐
tory layout, the production machinery, product and process specifications, and current order
and production data. The behavior models can be taken from associated libraries of physical
models combined with data‐based models trained on historic production data. We will develop
a wrapper for (semi‐)automatic model setup from static production plant data available in the
domain model. The user will be able to improve the automatically created simulation model
by simple drag and drop of entities. To sum up, a simulation input (from the domain model)
provides the necessary information for generating the simulation model, executing the simula‐
tion (simulator), and storing the simulation output data (for providing feedback into the domain
model). To make the simulation applicable seamlessly inside the ASSISTANT AI and optimization
algorithm, this wrapper will allow:

• the automatic model enrichment with dynamic production scenario data (decisions made by
automatic planner and automatic scheduler). These simulation scenarios data is retrieved
from the domain model.

• execution of a simulation run
• assessment and condensation of the simulation results. The simulation results are then
stored in the domain model.

Figure 18 shows the input and output data for semi‐automatic material flow simulation. This
feature provides the requirements RSim.1, RSim.3, and RSim.5. Thanks to the flow of data
coming from the real time digital twin into the data fabric, the data‐driven simulation remain
synchronized with the shop floor (e.g., it is aware of broken machines). Consequently, we may
assume the simulation to be a perfect replicate of the shop floor. To provide requirement RSim.2,
the simulation can be performed in a deterministic environment or it can account for stochastic
parameters. To account for uncertain parameters, multiple simulation scenarios are generated
with Monte Carlo methods.

To fulfill requirement RE.1, the simulator will only assign predefined shifts to the workers. The
user will be responsible to define shifts that respect work regulations.

Integration The simulation will play different roles. First, it will generate training data for
the scheduler’s model acquisition since this data is not available in the use case. Currently, the
use cases schedule the production with simple FIFO rules, and there is no record of the created
schedule. For simplicity, we decided to record the schedule created by the simulation. Second,
the simulation will communicate with the automatic planner to learn the capacity constraint
functions. The objective is to have a tool to evaluate the feasibility of a production plan and to
provide information on resource consumption and production lead time to improve the accuracy
of the planner. In the static decision context, the planning module generates simulation input
parameters for the entire planning horizon to be validated by the simulation. Feedback will be
provided from the simulation module to the planning module, and this feedback will be used to
learn the capacity constraint or production lead time. In a dynamic decision framework, given
the updated information available in each period, dynamic planning decisions are selected in
each period by the planning modules or by user interaction. To use the simulation in a dynamic
decision framework, The planning module will send a request to simulate for a single period with
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Figure 17: Data flow for the semi‐automatic material flow simulation

a given input state and planning decisions. The simulation outputs the state at the end of the
period. Third, we will evaluate the use simulation‐optimization approach. In this context, the
simulation provides a black box evaluation of schedules inside AI, black‐box optimization, evo‐
lutionary algorithms, etc. Finally, the simulation will validate the plans and schedules proposed
by production planning and scheduling components.

To facilitate the interface to the domain model, the production planning, and the production
scheduling module, the simulator will provide APIs to input the simulation scenarios, and access
the simulation results. Figure 18) shows the list of input data, and JSON or CSV are possible data
exchange formats. Section 5.5.2 gives the detail of the communication between the simulation
and the production planning module. Figure 18 provides a sequence diagram that represent
a typical simulation run. The user can interact directly with the simulation to make manual
decisions from scratch (i.e., the user create manually all the dynamic input described in Figure
18), or manually modify decisions suggested by the automatic planner. The human planner loads
the data and decisions from the simulation interface, and it calls the simulation to visualize the
results.

Technologies: We will rely on Tecnomatix Plant Simulation as an example for a proven tool on
the market (and the preferred choice of SAG), SIMTalk as Tecnomatix Plant Simulation propri‐
etary programming language for extended functionality inside the tool (to be used only very
restrictively in ASSISTANT), and JSON or CSV for data exchange formats to the outside.

Component Suggested technology

Programming language Python

Simulation Tool Tecnomatix Plant Simulation

Python libraries tbd

Communication REST API

Table 6: Technologies used in the simulation
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Figure 18: Sequence diagram for a simulation run

5.5 Production Planner

5.5.1 AI‐based Probability learning

The AI‐based probability learning module use the domain model to create a Bayesian network.
The user selects the parameter to learn (unknown parameter) and the possible explanatory
parameter (known). The Bayesian network is built from the relations in the domain model, and
we learn the conditional probability with pair copula. In T4.4, this tool is adapted to learn the
distribution of uncertain production planning parameters for material resource planning. The
capacity uncertainty can be inferred from the machine breakdown represented by the mean
time between failure, and mean failure duration. Assistant will seek to learn the distribution of
this parameter from plans implemented in the past.

Figure 19 shows the sequence diagram that describes the communications between domain
model and AI‐based probability learner. The user can select the parameters he wants to learn
(e.g., the demand for an item over a specific planning horizon) and the concepts that can ex‐
plain the parameters to learn. The domain model will return the data and the link between
the concept. These links can be used to build a Bayesian network before inferring probability
distribution from historical data and store them in the domain model.
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Figure 19: Sequence diagram for the interaction between the domain model and the AI‐based
probability learner.

5.5.2 Automated Production Planner

ASSISTANT’s planner is a tool that automatically generates a production plan on a mid‐term
production planning horizon (e.g., few weeks, few months within 1 year) or a long‐term planning
horizon (1‐2 years). That is, it automatically suggests when to produce/order as well as the sizes
of the lots. The tool will help the planners to decide the requirements (make or buy decisions)
and capacity planning (adjust the length of the shift/number of resources). The tool will account
for uncertainty in demand and production capacity, to produce a robust production plan. In
addition, we will use machine learning to better represent the capacity consumption and the
production lead time.

Scope: The tool is based on a production planning model that considers aggregated items and
resources with a granularity of a day, a week, or a month. To fulfill We will consider an exten‐
sion of the multi‐echelon multi‐item capacitated lot‐sizing problem (MMCLP) under uncertain
parameters. The MMCLP is to suggest when to produce as well as the sizes of the production
lots. The objective function is the expected total cost, and it includes inventory holding costs,
setup costs, production costs, backlog costs, lost sale costs, and the extra capacity cost. This
scope allows fulfilling requirement RP.1. To limit the scope of the project, The work presented
here does not attempt to solve strategic capacity planning for master planning [e.g., Barahona
et al., 2005] that aims to decide the number of production lines, etc.

Input data: The required input data for MMCLP are the demand, the bill of material, the pro‐
duction capacity, and the lead time. Note that this production planning model does not require
any assumption on the type of shop floor (job shop, flow shop, etc.) because they consider
aggregated data. The demand Dit for item i in period t can be represented with a parameter or
a probability distribution. We assume (without loss of generality) that all customer demand is
for end items only. If there exists a demand for components, we can create a dummy end‐item
corresponding to components reserved for shipping. The multi‐echelon flexible bill of materi‐
als/processes gives the production structure of each item in the set I of items. We denote by Ie
the set of end items and by Ic the set of components. Each item i can be acquired by alternative
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operations, and each operation o produces aoi units of item i, it consumes boi units of component
i, and consumes kor units of resource r. Modelling operations leads to a very generic lot‐sizing
model that can include alternative production routing and make or buy decisions Begnaud et al.
[2009]. The requirement plan must account for the production capacity. Each resource r in
the set of resources R has a given capacity Cr. In each period t, the capacity of resource r can
be expended, and each unit of extra capacity costs or. The component i produced in period
t is available in period t + Li, where Li denotes the lead time of item i. This lead time may
correspond to the time between the placement of an order to a supplier and its delivery, or to
the number of periods between an order is released to the scheduler, and the period where the
item is produced.

Output data: The tool will output the suggested production plan, including when to produce,
how many items to produce, when to buy materials, and how many items to buy, and the amount
of extra capacity required. More precisely, the tool will recommend a plan that includes:

• If a batch of operation o is performed in period t, and this is represented by a binary
decision variable Yot.

• The quantity Qot of operation o to perform in period t.
• The amount ert of extra capacity required for resource r in period t.

Integration with the digital twin: The production planner will interact with the domain model and
the simulation. These elements can enhance classical production planning approaches by pro‐
viding data that can help enhance the accuracy of the model. Figure 20 shows the links between
the production planner, the simulation, the scheduling tool, and the domain model. The domain
model is the bridge between the physical system and the visual systems. It provides basic data
from the physical system to the simulation model and production planning mathematical model,
and feedbacks the production schedule to the physical system supporting decision‐making. This
data can help infer the value of the required parameters and the probability distributions of
uncertain parameters. The simulation models validate the correctness of mathematical mod‐
els, and make sure the production plan is implementable on the shop floor. The production
planner will provide the production quantity per period to the simulation as well as the resource
capacity. The simulation will inform on the possibility to adhere to the production plan. The
simulation will tell if the capacity was exceeded on a specific resource, and at a specific period.
The automated production planner will provide the size of the production batches to the sched‐
uler as well as a targeted production period. In the scheduler, the release date corresponds to
the start of the period, and the due date corresponds to the end of the period. The due date
associated with non finished product in the scheduler is a soft due date (whereas violating the
due date on end‐item is heavily penalized), to ensure adherence to the production schedule,
whereas the customer due date might be penalized strongly or even considered as hard dead‐
lines. Note that the production planning module will communicate with the scheduler through
the domain model.

The rest of this section describes how the uncertainty is incorporated into the production plan‐
ning model, and how the communication between simulation and production planning model can
help to learn the capacity constraint in the production planning model.

Uncertainty: To provide requirement RP.2, the tool will be able to deal with uncertain prob‐
lems. In this work, we will develop stochastic optimization approaches to deal with uncertainties
that are encountered by most companies. The parameter uncertainty must be described with a
probability distribution given by the AI‐based probability learner. Based on this distribution, the
tool will generate a set of scenarios with Monte Carlo or advanced sampling approaches such as
Quasi‐Monte Carlo. For instance, uncertain demands can be represented by the set Ω of demand
scenarios, where each scenario ω ∈ Ω represents a possible realization of the demands over
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Figure 20: The integration of production planning in the digital twin.

the planning horizon, and it has a probability pω. The literature on production planning under
uncertainty defines two different decision frameworks to deal with uncertain parameters. In
the static decision framework, the decision is made for the entire planning horizon and they are
frozen. On the contrary, in the dynamic decision framework, the production quantity in period t
is decided dynamically after having observed the parameter in period t−1 (this leads to a multi‐
stage optimization problem). In the static‐dynamic decision framework [Bookbinder and Tan,
1988], the setup decisions are frozen, whereas the production quantity is decided dynamically.

Uncertainty due to adherence to the plan in the scheduler/simulation: The planner releases
a set of orders to the scheduler/simulation. In practice, due to the aggregation errors and the
uncertainty in the capacity (machine breakdown) and process duration, the scheduler/simulation
might not be able to follow the plan exactly (e.g., as simulation accounts for machine break
down, we might discover that the suggested production qualities are too large to be produced
in a period). From the point of view of the planner, in a dynamic decision framework, the
non‐adherence to the plan can be seen as yield uncertainty. The planner releases a production
quantity in a period t, but the shop floor produces a different quantity. In period t + 1, the
planner observes the yield, and it decides the production quantities in period t+1. Note that the
yield uncertainty depends on the decisions. If the production plan uses the capacity tightly, the
scheduler will likely not be able to adhere to the plan. In addition, the planner could control yield
uncertainty by providing a weight for each item to the scheduler (items with large weights are
more important, and they are likely to be produced). However, decision‐dependent probability
leads to a non‐convex stochastic program [Hellemo et al., 2018], which is hard to solve. We will
investigate the best approach to solve this problem. In a static decision framework (or in the two‐
stage heuristic), the planner provides a plan for the entire horizon, and the simulation considers
the production quantity as frozen (they are not modified dynamically). If the released orders
are ultimately all planned, the non‐adherence to the plan can be seen as stochastic lead time,
where the lead time corresponds to the number of periods between the release of a production
order to its production. For instance, if the production planner assumes the lead time is zero
(i.e., a production order is performed in the same period it is released), the jobs will be released
with a release date corresponding to the start of the period and a due date corresponding to the

D 4.1 Requirements for intelligent digital twin for production planning and scheduling Page 55 of 84



Project 101000165 ASSISTANT

end of the period. The simulation might not be able to respect these release and due dates, and
the actual lead time might differ from zero.

Note that when the simulation executes the plan, it may split a production order over several
periods. In this case, the lead time may be considered as the time the last operation of the
planned quantity is performed.

Learning the capacity constraint: To provide requirement RP.3, we aim to learn the capacity
constraints in the mathematical model through machine learning based on the output of the
simulation. The tool can run a simulation to get the capacity consumption associated with given
production quantities. The challenge is to create a capacity constraint that is accurate but
simple enough to solve the resulting model. The first step is to select the features to predict the
capacity consumption. These features may include an estimate of the amount of each item in a
product family and their estimated processing time, the number of alternative resources for an
item, if two items or product families are produced the same day… We will use machine learning
(ML) technics to learn the capacity constraint from these features. We will investigate linear
regression, random forest. These ML methods lead to a trained model that can be translated to a
mixed‐integer linear program (MILP) Biggs and Hariss [2018] to predict if the capacity is violated
or not. While these new constraints might increase the accuracy of the capacity consumption
calculation, they also increase the number of variables and constraints in the production planning
model. Therefore, it is important to select only the features that explain the most the actual
capacity consumption. We might as well investigate if other types of constraints can be acquired
in production planning (lead time, financial, …).

Optimization approaches: Mathematical optimization is the most appropriate tool for produc‐
tion planning. In fact, the lot‐sizing models have attracted a lot of work from the operation
research community. These researchers proposed several reformulations, cuts, and solution al‐
gorithms such as Lagrangian Relaxation, cutting planes,… However, the MILP approach does not
scale well in the dynamic decision framework, where the production setups are updated as the
information arises. The few works are limited to small‐scale instances in simple environments.
In fact, the simple MMCLP is NP‐hard. We aim to solve large instances, with 5‐10 echelons in
the BOM, and a large planning horizon. To provide requirement RP.4, in the production planner,
we will apply heuristic algorithms to get the optimal results within 30 min. [Thevenin et al.,
2021] showed that the two‐stage approximation provides a good heuristic to the static‐dynamic
decision framework when the demand is uncertain.

Figure 21 provides the sequence diagram for automated master planning. The user asks for the
automated production planning from the Production manager UI where he can specify the various
constraints on the plan. The planner will get the required data from the data fabric (domain
model). Once the best plan is computed, the planner sends the production load per period (with
their release date and due date) as well as the number of resources to the simulation. The
simulation check that the plan is implementable, and it returns the actual capacity consumption
per period. The planner improves the representation of the capacity function, and re‐optimize.
The loop continues until the plan is implementable in the simulation.

Finally, Table 7 provides the technologies we will use for the devlopment of the tool. We rely on
Python for the numerous AI libraries available. To facilitate the exploitation of the result, we
keep the solver selectable (depending on the business strategy a technology provider may prefer
to rely on commercial or open‐source solvers). However, we use CPLEX in our experiments since
most benchmarks states it is one of the most efficient (Gurobi has similar performances).
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Figure 21: Sequence diagram for the interaction between the simulation and automatic planner.

Component Suggested technology

Programming language Python

Linear programming solver Selectable, but experimentation will be carried out with CPLEX.

LP Modeling Library Pulp

Sampling library Lattice Builder

Python library Numpy, Panda, Openpyxl, …

Communication REST API

Table 7: Technologies used in the automated planner

5.6 Scheduler’s optimizer and model acquisition

5.6.1 Scheduler’s optimizer

ASSISTANT’s scheduler is a tool that help production planners to generate a production schedule,
and it will be provided for Flexible Job Shop scheduling (FJSP). The FJSP is to schedule a set of n
jobs, where each job j consists of a set Oj = {Oj1 . . .Ojm} of operations to perform on resource
group M1 . . .Mm, respectively. Each operation k of the entire set of operations O is associated
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Component Suggested technology

Programming language C++ , Java

Solver SICStus (and possibly solver interfaced to MiniZinc), IBM’s CPOptimizer

Communication REST API

Table 8: Technologies used in the scheduling optimizer

with a duration Pkr on machine r ∈ R. In addition, each job j cannot start before its release
date rj, and it should ideally be completed before its due date dj. Multiple industry specific
constraints can be added to this model. The tool will rely on a constraint programming model
solved with a solver.

Figure 22: Sequence diagram for the interaction between the domain model and the scheduler.

Fig 22 provides the sequence diagram with the interaction between the optimizer and the domain
model. The Optimizer will get the data to plan from the domain model. The input data will
contain the same information as the information provided to build the model (but updated to
current values). Running a solver will provide a production schedule that can be stored in the
domain model.

Table 9 provides the technologies used to implement the solver. To provide requirement RSc.2,
we will rely on the MiniZinc interface that can provide access to multiple state‐of‐the‐art con‐
straint programming solvers.

5.6.2 Model Acquisition

To fulfill RSc.1, the scheduling tool should be able to self‐adapt to the production environment.
Each manufacturing shop floor is unique, and an efficient production scheduling tool must ac‐
count for the specific constraints encountered in a shop floor. The creation of the optimization
model dedicated to a specific manufacturing shop is an expensive and cumbersome process.
Modeling requires expertise in optimization and a good knowledge of business processes on the
manufacturing shop floor. The optimization expert must discuss with the customers to under‐
stand the process. Since a shop floor manager usually has limited knowledge in optimization,
the discussion is long and complicated, and additional requirements often arise once the model
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is ready,… We aim to simplify this process by automatically learning production scheduling pa‐
rameters and constraints.

The model acquisition will acquire common constraints and parameter, such as:

• The formula to compute the processing time of operation on machine m.
• Machine eligibility restriction. An operation can only be performed by the subset of the
set machines in each resource group.

• The formula to compute machine and sequence‐dependent setup time on each resource.
• The minimum/maximum transition time (possibly 0) from one resource to the next.

Model acquisition will also acquire industry specific constraints, and this might include:

• The blocking constraints on resources. After processing an operation, some machine may
not be able to process another operation until the operation starts on the next resource
group. This constraint occurs because of the limited storage area between resource groups.

• The weight of each classical KPI in the objective function (setup costs, total tardiness,
makespan, …

• A company‐specific objective function.
• Tooling constraints (cumulative constraints): To process an operation, a machine might
require a specific tool (or a worker with a specific skill) that comes in a limited num‐
ber of exemplars. Often, the optimization model does not require to represent the tool
occupation explicitly, because they are seldom blocking the processing. But the model
must ensure that the number of tasks requiring tool t processed simultaneously is lower
than the number of exemplars of t available on the shop floor. When each tool come in
a single exemplar, then we have incompatibility constraints. Two operations o and o′ are
incompatible if they cannot be processed simultaneously.

• Limited raw material inventory. While the release date of the job might come from the
production planning tools, they are also often associated with the arrival of the raw ma‐
terial and components required for production. In some cases, the processing of a job is
not limited by a release date, but by the availability of raw material. More precisely, each
operation consumes some units of raw material, and the production schedule must ensure
that the amount of raw material consumed at any time is lower than the amount available
at a time.

• Batching constraints. A batch is a set of items performed simultaneously on a resource
(e.g., an oven). In manufacturing, the composition of a batch may be subject to vari‐
ous constraints (some parts might require a specific temperature, or a specific chemical
environment).

The model acquisition is run only when the constraint programming model must be modified
(change on the shop floor/first use/new product/…).

Input data: Model acquisition automatically build the scheduling model from data. From the
model acquisition interface, the user selects the concept that he or she believes is required to
compute the schedule. The user should limit the data to only use data (to avoid noise). The user
also selects the relevant time frame to collect the past data, this time frame typically spans
from the previous change on the shop floor (new product/new machine/…). These data may
include:

• The schedule computed in the past (not actual data, but a plan made by hand, along with
the data on product, machine, …) with the start and end date of the tasks on each resource.
Ideally, the user should select plan schedule rather than the implemented one.

• Any data that can help to compute properties of the task
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• The machines with their properties (disjunctive, setups, other characteristics, …)
• The task duration on each machine.
• The production load with the release date and due dates.
• The values of the KPIs in the previous schedule.

These inputs are given to the model acquisition as tables (that can be given in different formats
including Json) describing feasible solutions of a production schedule. We may only provide one
single solution. A table may describe one key element of the schedule such as the tasks, the
resources as well as key parameters (e.g. cost setup). For instance, each entry of a table de‐
scribing tasks typically gives the value of the different attributes of a task (e.g. identifier, start,
duration, end, machine used, the quantity of resource used, type, earliest start, latest start,
earliest end latest end, the tool used, the quantity of raw material used, quantity produced,
due date, the cost for producing the task), while each entry of a table describing resources pro‐
vides the values of the different attributes of a resource (e.g. identifier, type, speed, capacity,
number of resources of this type, cost for opening the resource, cost of use per unit of time,
unavailability periods, availability periods). For some problems, we may have one table de‐
scribing renewable resources, as well as a table providing non‐renewable resources. Note that
the model acquisition should work even if there is information for a subset of the attributes.
Besides providing such tables, we may have some metadata associated with the different tables
providing information for interpreting a table and some of its entries:

• The main object is described by a table (e.g. tasks, machines).
• The attributes that should be computed by the solver, i.e. the output of the model, and
the attributes that are fixed.

• The type of an attribute (cost, time point, duration, task, machine, type).

We list below the assumption about the possible inputs to interact with the model acquisition
tool. We use here the word possible as not all these inputs could be possibly provided by the
external modules. When some input is mandatory, we indicate that it is the case, but one should
keep in mind that providing information that is not mandatory would help the model acquisition
process.

1. [input format: some tables] (mandatory) We assume that the data is provided in some
table format using one or several tables. Each table entry contains an integer value or a
string. Dates should have been converted to some integer value.

2. [one or several samples: a Boolean and some marks] (not mandatory) One has to tell
whether one provides a single or several examples from which the model acquisition tool
should acquire a model. In the case of several examples (i.e. we give more than one
schedule from which a model has to be acquired) one has to somehow mark these examples
(by using, for instance, the first column of each table to indicate the sample number). By
default, we may assume to have one single sample.

3. [column interpretation: one enumerated type for each column] (not mandatory) One
may provide some information regarding the interpretation of each column. In the context
of domain modelling, we may agree on a possible semantic for the information located
in a given column of a table (e.g. instant, time interval, cost, amount of resource, tem‐
perature, speed, …). By doing this, we may better match a column with the argument of
a scheduling constraint: the first argument of the disjunctive constraint expects instant,
while it second argument expects intervals.

4. [column names: one string for each column] (not mandatory) To get an interpretable
model, it would be good to provide some names for most columns: when such names are
presented we will use them when reporting for a constraint found. If no name is provided,
we may guess a potential name from 2) or just use the table name (if more than one table)

D 4.1 Requirements for intelligent digital twin for production planning and scheduling Page 60 of 84



Project 101000165 ASSISTANT

and the column number.
5. [keys and functional dependency: a set of keys and a set of functional dependen‐

cies] (not mandatory) We may also expect some information about the primary key (or
compound keys) of the table, as well as columns whose value is a key referring to the key
of some other table (e.g. in a table describing the tasks we have a column whose value
represents the identifier of a resource the task uses; this identifier refers to the key of
a table describing the different attributes of each resource). We may also get functional
dependency (the fact that the value of a column of a table is uniquely determined by a
subset of columns). In the context of functional dependency, we may ask for some way to
restrict the scope of a functional dependency to a smaller subset of columns.

6. [input and output of the generated optimization model: a Boolean for each column of
each table indicating whether that column is an input or an output] (mandatory) If we
want to generate a model, we need to know what will be the input information and what
will be the output computed by the model. For instance, in a scheduling problem, the
start and end of each task will be typically computed by the model, and the task duration
and task resource consumption may be fixed. Some other global parameters may be some
implicit resource limit or the aggregated resource capacity (which is not given in the de‐
scription of each resource), the number of tasks or the scheduling horizon. For solving a
model we should assume that some incomplete set of tables are given (some columns will
be empty, and running the model will provide values for such empty columns). Another
point which is important to know is whether the tasks are preassigned to some resource
(in this case this assignment will be an input of the model, otherwise the assignment of
the tasks to the machines will also have to be found and we need to use a specific con‐
straint: for instance, we will use the cumulative constraint if the tasks are preassigned to
a resource and the cumulatives constraint if the tasks are not preassigned).

Output

The model acquisition provides a constraint programming model. We will investigate the pos‐
sibility to validate these constraints by communication with different means (some metadata
provided, an oracle, or a human). Here we assume that a human could potentially answer to a
wide range of questions (but we should limit the number of questions we ask a human) or that
an oracle is a program (e.g. a simulator) that could answer a fixed set of identified queries (but
unlike a human, an oracle could answer a large number of queries). For instance, the model
acquisition may ask to:

• Confirm it acquired the correct formulas (e.g., Task duration = speed · quantity)
• Confirm it model the resources appropriately (e.g., Machine M is a disjunctive/cumulative
resource)

• Confirm that a set of elements belong to a subgroup (e.g., tasks T1,T2, . . .Tn run on the
same machine group? Tasks T1,T2, . . .Tn are from the same job? Tasks T1,T2, . . .Tn were
running on the same machine and at the same period?

• Ask questions about potential missing tasks (e.g., setup by a technician that was not de‐
scribed in the input data).

We list below the output and possible queries of the model acquisition tool:

1. [an acquired model: a set of constraints which was acquired given either as a MiniZ‐
inc model or as a SICStus program] (mandatory) In a preprocessing phase, the model
acquisition tool will compute some constraints which are valid for a complete table (e.g.,
inequality which always holds for all rows of a table between two columns, constraint on
the columns, …). As such constraints will be exploited to acquire further constraints, we

D 4.1 Requirements for intelligent digital twin for production planning and scheduling Page 61 of 84



Project 101000165 ASSISTANT

may ask whether these constraints are valid or are just artefacts.
2. [validating some standard constraint on a full table: a query asking whether a formula

linking several columns of the tables is valid or not] (not mandatory) In a preprocessing
phase, the model acquisition tool will compute some constraints which are valid for a
complete table (e.g., inequality which always holds for all rows of a table between two
columns, constraint on the columns, …). As such constraints will be exploited to acquire
further constraints, we may ask whether these constraints are valid or are just artefacts.

3. [confirming outliers table entries: a query asking where some tables entries are incor‐
rect or not] (not mandatory) When acquiring a formula that explains the values on each
row of a given column with respect to the values of the same row of other columns we may
find that some rows are outliers (on a specific row some data is wrong). We may ask to
confirm this.

4. [confirming the scope of a global constraint: a query asking whether a global constraint
linking several columns of the tables is valid or not] (not mandatory) When acquiring
global constraints like for instance a chain of precedence, a disjunctive constraint one may
ask whether the scope found for the constraint is correct or not (the scope being defined
by some conditions on some attributes of the tasks: for instance, a set of disjunctive tasks
will be identified both by the fact that they do not overlap, and that they are assigned to
the same resource.

5. [controlling the behaviour of the model acquisition tool: a list of options interpretable
by the model acquisition tool] (not mandatory) Some subparts of the model acquisition
tool will be parametrized, for instance:
(a) the module which acquires formulae can be parametrized to both specify which type

of formula we may consider, as well as the order in which we should examine the dif‐
ferent types of potential formulas. We may also specify the range of some coefficient
of the formula, or the fact that some acquire inequalities should be sharp (or not).

(b) the module which acquires global constraints in the context of scheduling (chain of
precedence, disjunctive, cumulative, cumulatives, diffn, …) could also be parametrized
to tell the subset of global constraints one may want to consider.

6. [identifying constraints on implicit tasks: a query asking whether a global constraint
linking some functions derived from several columns of the tables is valid or not is
valid or not] (not mandatory) If the tables we are given do not directly provide all infor‐
mation that is needed to identify some constraint of a model, we should have the possibility
to somehow get such information. In the context of scheduling, a typical example would
be the fact that some tasks (which have some kind of restrictions like maximum duration,
needed resources) are never explicitly mentioned in the schedule; for instance, in a flow
shop problem we may need to consider a task between the end of a given job on a machine
and the start of the same job on the next machine; a second example also in the context
of the flow shop would be that a job running on a certain machine may require some extra
resource (e.g. a person) for doing some setup work during the first 15 minutes of the task.
Even if we identify such candidate constraints, we should get some confirmation that they
really hold (confirmation by a person or an oracle).

Basic steps of model acquisition: The model acquisition will consist of a set of modules that
are processed sequentially:

• Step 1 will analyse each table in order to identify the types of the different attributes
(e.g., Boolean, interval, set).

• Step 2 will search for functional dependency in each table: it will determine whether a
given column of the table is functionally determined by a given subset of columns of the
table.

• Step 3 will search for each identified functional dependency a formula which relate the
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input parameters to the output parameter of the functional dependency. The formulae
used will correspond to linear constraints but also to quadratic constraints as well as to
constraints mentioning arithmetic operators such as min, max, mod, and div. We may also
extract formulas corresponding to symbolic decision trees, where each internal node of a
tree correspond to a condition on some attributes and each leave of the tree corresponds
to a linear, quadratic or arithmetic formula. The motivation to acquire such symbolic
decision trees is that some attribute value may be defined as a partition of cases where
each case is described by a conditional part and by a formula. In the context of ASSISTANT
(and scheduling), a typical example would be a situation where a cost or the value of an
attribute of a task is a function defined by intervals: for instance the cost of a task may
be defined by two distinct linear or quadratic functions, depending on whether the task
terminates before some due date (in this case the cost first function encodes some storage
cost), or after a due date (in this case the second function represents some penalty cost).
For instance the duration of a task may be depend both of the period of the day where the
task run (during working hours, during the night), but also on the machine to which the
task is assigned.

• Step 4 will search for inequality constraints between columns of the table.
• Step 5 will interpret the content of each table.
• Step 6 will try to search for functional dependency constraints that can be inferred from two
distinct tables. Note that cost constraints typically fall in this category where a cost may be
determined from several tables. We illustrate this aspect with one example. For instance,
the constraint giving the duration of a task t may be of the form d[o] = m[o].s[m[o]], where
d[o] andm[o] respectively correspond to the duration of a task o, and the machine to which
task o is assigned, and s[m[o]] to the speed of machine m[o]. In this example, the attributes
d[o] and m[o] will be part of the table describing the tasks, while the attribute s[m[o]] will
be part of the table describing the resources.

• Step 7 will search for resource constraints. As in the model seeker, the idea is to project
back the task on some attributes and check that each subset of projected tasks are for
instance in disjunction.

• Step 8 will generate an executable model which can be run by a solver.

Figure 23 provides the sequence diagram for model acquisition. The users start by selecting
relevant data by querying the domain model, and the model acquisition starts. Once a model
is acquired it is validated by communication with the user. During T4.5, we will investigate if
the validation questions can be answered by domain models, the simulation, or human (called
an oracle in Figure 23). The possibility to answer these question with the simulation or domain
model allow to ask a large number of questions, whereas asking a human require to reduce the
number of questions, and make the questions understandable by a human. Beside answering the
questions, the oracle may provide a pointer to data showing the assumption is not correct.
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Figure 23: Sequence diagram for the model acquisition.

To enhance the already developed model seeker and make it applicable in a production schedul‐
ing context, the model acquisition tool of ASSISTANT will be developed in SICStus and Java. We
may provide an interface to MiniZinc to access a wide range of Constraint Programming solvers.
Nevertheless, IBM’s CP Optimizer will be used to model some aspects of scheduling problems
that are not covered by other Constraint Programming platforms, like optional or alternative
process paths.

Component Suggested technology

Programming language Java

Model Acquisition SICStus, Java

Solver SICStus (and possibly solver interfaced to MiniZinc), IBM’s CPOptimizer

Table 9: Technologies used in the scheduling optimizer

5.7 Use case validation

ASSISTANT promotes continuous integration in demonstrators and use cases. Therefore, the
different tools will be integrated with other deliverables as soon as they are delivered. The
deliverable will be released as follows:
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• The digital twin will be delivered at month 18, and the contribution of WP4 to the digital
twin includes the domain model and the simulation. With these elements, the use case
will already be able to create production plans and schedules by hand and to validate the
quality of these plans with the simulation.

• At month 24, we will release the model acquisition tool for scheduling, and the robust
production planner. With these tools, the use case will be able to automatically generate
a production plan and production schedule. However, the tools might not scale well, and
they might not be able to solve large‐scale instances.

• At month 30, we will release tools that include advanced optimization techniques to solve
large‐scale production planning and scheduling problems.

• At month 36, after use case validation, an updated version of the tools will be released.

To respect requirement RE.2, each use case will define a responsible for AI failure due to bad
quality data, and a responsible for AI failure due to poor use of the tool by humans.

6 Conclusion

This document provides the road map to develop the intelligent digital twins for production plan‐
ning and scheduling. Starting from interviews with use case providers, we built the requirements
for the tools developed in WP4 by following the requirement engineering procedure. Based on
these requirements, the partners involved in the work package agreed on the precise structure of
the developed tools. The requirement analysis shows that the use of AI to improve the accuracy
of decision models for production planning and scheduling is a promising area of research. On
the one hand model acquisition can acquire complex scheduling problems automatically from
data, and this technics can also be used to better learn capacity consumption in production
planning. In addition, modeling uncertainties within such models will yield robust and flexible
production plans. This document provides a rough description of the technology used and the
communication required between the tools. The next step in the project is the development
of these tools, starting with the domain model and the simulation, before implementing the
planning module and scheduler.
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7 Appendix

7.1 Abbreviations

Abbreviation Meaning

ASSISTANT
LeArning and robuSt decision SupporT systems for agile mANu‐
facTuring environments

DT Digital Twin

ML Machine Learning

AI Artificial Intelligence

APS Advanced Planning System

MES Manufacturing Execution System

ERP Enterprise Resources Planning

MRP Material Resources Planning

FIFO First In First Out

IoT Internet of Things

RFID Radio‐frequency identification

WP Work Package

TX Task X

DX Deliverable X

MX Month X

RSim Requirement for simulation

RD Requirement for data

RP Requirement for production planner

RSc Requirement for scheduling

API Application Programming Interface

KPI Key Performance indicator

UI User Interface

Table 10: Abbreviations

7.2 Validated Data sets

The use cases provided several data sets:

• Small size data set that will be use to ensure all partners have a precised understanding of
the use cases, and of the tools developed in the project. The small size data sets that will
help for the development of the methodology and the implementation. To ensure a proper
implementation of the communications between the tools, we provide input and output
data sets.

• Realistic size data sets with full complexity that will be used to benchmark the performance
of the tools.
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At this early stage in the project, only the small size data sets are available. Larger data set
will be provided when the tool are running, because at this point in time we will be sure of
all the data we need and its format. Table 11 lists the provided data set. Note that the data
may require some change once in used by the tool. Therefore, they will be published only once
validated by a use in the softwares.

Data set name Description

SE_smallsize_Plan_Input
This data set contains small size input data for production plan‐
ning in the Siemens Energy use case

SE_small_Simulation_Input
This data set contains small size input data for the material
flow simulation of Siemens Energy , the model acquisition, and
the scheduler’s optimization

AC_smallsize_Plan_Input
This data set contains small size input data for production plan‐
ning in the Atlas Copco use case

AC_smallsize_Plan_Output
This data set contains an example of output that
must be created automatically of the planning tool if
AC_smallsize_Planning_Input is given as input.

AC_small_Simulation_Input
This data set contains small size input data for the material
flow simulation, the model acquisition, and the scheduler’s op‐
timization of Atlas Copco

AC_Historical_Data
This data set contains historical data regarding the demand,
and the lead time in Atlas Copco. This data set is the input for
the AI‐based probability learner.

Planning_Output_Model Give the data model for the output of the planner

Simulation_Output_Model Give the data model for the output of the simulation

Table 11: Data sets

7.3 Requirement elicitation methodology
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Requirements Engineering Procedure 

(Short document)  
 

The confrontation with requirements happens almost daily in work and private life. Requirements are 

distinguished from wishes and goals by documenting them in writing or storing them electronically. 

Requirements are divided into different types. Commonly, they are categorized as functional and non-

functional. In the context of identifying and dealing with requirements, existing publications identify a 

procedure for requirements engineering as shown in Figure 1. Procedural steps, which appear as main 

activities in existing literature, are marked in blue. 

 

Figure 1: Procedure for Requirements Engineering 

Requirements engineering describes the systematic procedure to design and administer requirements and 

aims at the creation of an efficient and error-free system. This paper focuses on requirements 

development because requirement management represents an ongoing activity during the 

implementation of the system. In the following, we explain the procedural steps for requirements 

development roughly. For some ASSISTANT tools, the system modeling is usually part of the first 

deliverable, whereas the system model of the data fabric is presented in a separate deliverable due to 

its complexity. Nevertheless, the procedure is done iterative and in parallel.  

1. System Context is the part of the environment that is responsible for the definition as well as 

the understanding of the requirements. The system boundary is determined first, which 

determines, on the one hand, the system and determines on the other hand, which aspects are a 

component of the system environment. Subsequently, the context delimitation explains how the 

system environment is differentiated from the irrelevant environment, by describing relations to 

the system, which can be developed. 

In ASSISTANT, here we expect to see the scope of the system that should be developed,  the 

link with other work-packages and its KPIs if possible. 

 

2. Requirements Determination of the system requirements takes place in the second step. 

Techniques like brainstorming and document analysis help to identify and detail the requirements 

from stakeholders and other sources. For this purpose, preliminary requirements are first 

developed as notes. Traceability is of great importance for determining the requirements. The 

sources from which the requirements are determined must be evident.  

In ASSITANT, here we expect use cases and together with requirements specification all 

possible requirements that can cover the scope of the system and their acceptance criteria. 

 

3. Modeling is the process of developing abstract models of a system. The architecture of the system 

is developed during requirements engineering to iteratively describe the requirements of a system 

during the system design phase. 

In ASSISTANT, here we expect diagrams that provide the components and the functionality 

of the system under study. 

 

4. Requirements Specification is used to formulate the preliminary requirements that were 

identified during the requirements elicitation process. This is an important step in creating 
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transparency for all stakeholders. Formulation rules and blueprints can help document the 

requirements. In the course of requirements documentation, so-called bidirectional traceability 

must be ensured. This includes identifying which sources are responsible for defining the 

respective requirement and which development artifacts arose from which requirements.  

In ASSITANT, here we expect clean requirements represented using table formalism as shown 

in the document Requirement_Engineering_Procedure (See Partage web platform). 

 

5. Requirements Validation, during this activity, all requirements must be reviewed and agreed 

upon on time. In requirements validation, developers check whether the requirements are 

formulated as desired by the stakeholders.  

In ASSITANT, here we expect the validation of requirements based on acceptance criteria.  

Each validated requirement should be linked to corresponding tasks and deliverables in work 

package. In addition the model should be verified using the requirements developed. 

 

6. Requirements Management 

Requirements management consists of different activities related to the management of the 

developed requirements. Traceability, impact analysis, cost estimation, risk management, 

requirements change, and variations are handled with these activities. 

In ASSITANT,  here we expect continuous activity during project lifecycle for requirements 

management. 

A detailed description of the requirements engineering procedure used is in Partage called 

Requirements_Engineering_Procedure.doc.  
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7.4 Interview Questions
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Table 1: Machines related questions.  

 

Nr Question Related WPs  

Q2.1.1  What kind of machines do exist? (CAD available?) 
WP5, WP3 

  

Q2.1.2  Do machines located in the same machine area have the 
same capabilities? WP3 

 

Q2.1.3  Are you using a combination of old and new machines of the 
same type? if so, are there any deviations in the processing 
times? 

all 

 

Q2.1.4  What kind of capabilities do they have? 
WP5, WP3 

  

Q2.1.5  Are there any machines that need auxiliary resources? 

WP3 

 

Q2.1.6  What are the specific set-up times for the machines? 
WP5 

  

Q2.1.7  Are CAD files of the production system available? (Required 
input for process planning) 
 

WP3 
 

  

Table 2: Products related questions.  

 

Nr Question Related WPs 

Q2.2.1  What products do you produce? WP5, WP3 

Q2.2.2  What are the product variants / parameters? WP5, WP3 

Q2.2.3  What are the production steps (operations) to produce an item? How are 
they linked to machines and resources (BOP, BOM, mapping of steps to 
capabilities and machines, processing times, required worker skills ...)? 

WP5, WP3 

Q2.2.4  What is the number of production steps/operations for each product? WP5, WP3 

Q2.2.5  What are the characteristics of the steps? (duration depend on the 
resource/ duration depend on the hour/ precedence relationships, etc.)? 
 

WP5, WP3 

Q2.2.6  Are CAD files of the products, mockups, and components available? 
(Required input for process planning) 

WP3 

 

Table 3: Resource related questions.  

 

Nr Question Related WPs 

Q2.3.1.1  What kind of storage do you use? 
 How is the storage managed?  
Any rules available (Based on allocation to orders/ production steps, 
transportation)?  What is the availability,  

 

Q2.3.2.1  What means of transport do exist? 
Transport is manual, semi-automated or automated? 

 

Q2.3.2.2  What is the transport capacity?  

Q2.3.2.3  How does transport between certain steps / machines look like?   

Q2.3.2.4  How is the transport managed?   



Any rules available? 
Are any workers required for transportation? 

Q2.3.3.1  How many individual operators are working under the same workstation on 
daily basis?  

WP5,  
WP3 

Q2.3.3.2  Are there different levels of responsibilities for operators that require a 
different level of information to be provided? 

WP5,  
WP3 

Q2.3.3.3  Preferable devices for human operators’ interface:  
a) Smartphone, b) Tablet / Big touch screens, 
c) Smart watches/ bands, d) AR glasses 

 
(answer by placing in order from the most preferable to the less 
preferable) 

WP5 

Q2.3.3.4  Do you have currently a process for tracking human operators’ errors? 
 
If yes, please could you provide more details? 

WP5 

Q2.3.3.5  Please indicate the daily work plan of an operator.  
(e.g., number of shifts, number of breaks in a shift, etc.) 

 
WP5 

Q2.3.3.6  How often new working procedures are introduced to an operator? 
 
(every X week, every X months) 
 

WP5 

Q2.3.3.7  Would be possible to conduct interviews with some operators of the 
factory? 

WP5 

Q2.3.3.8  Would be possible, later in the project, to perform some validation tests of 
the developments with some operators of the factory? 

WP5 

Q2.3.3.9  What is the current process for informing/training a worker about his/her 
activities on a workstation? 

WP5 

Q2.3.3.10  Do you believe an interface that uses voice commands would be useful 
given the noise in a shopfloor? 

WP5 

Q2.3.3.11  Which different skills exist between workers? Who is able to perform which 
process step (which categories)? 

WP3 
 

Q2.3.4.1  Do you have currently a process for tracking robots’ failures? 
 
If yes, please could you provide more details? 

WP5 

Q2.3.4.2  How long does it take to program a robot? WP5 

Q2.3.5.1  How many workers/robots do you have, or you can have? WP5,  
WP3 

Q2.3.5.2  How can workers/Robots be characterized (availability, skills, allocation to 
machines / transportation)? 

WP5, 
WP3 

 

Q2.3.5.3  How dynamically can workers/Robots be allocated to machines? 
Can workers/Robots move among stations? If yes when they can move? 
Do you consider tasks re-assignment among stations?  
 
 Are there any other types of workers/Robots, i.e., temporary workers?  
How do you react to workers/Robots unavailability? Does it impact on 
process time or other parameters? 
 

WP5 

Q2.3.6.1  How many sensors do you have? 
What kind of data they are collecting? 
Are there any sensors for quality control? Do they monitor both manual and 
automated operations? Do you have online or offline monitoring? 

WP5 

 

Table 4: Factory and process related questions.  

  



Nr Question Related WPs 

Q2.4.1  What is the factory layout? Are CAD Files available? WP5,  
WP3 

Q2.4.2  Would you characterize the workstation as a noisy place? WP5 

Q2.4.3  What is the available capacity? 
Can you adjust your production capacity each day/week/month depending 
on the load? 
Is the total amount of inventory limited? 
How many end-items are currently produced on your shop floor? 
How many levels are there in typical Bill of Material for the items produced 
in your factory? 
 

WP5 

Q2.4.4  How can production be characterized (job shop, flow shop, batch 
production, lot-size-1 production, …)? Assembly or manufacturing? 
High mix low volume or low volume high mix or both? 
Is the production a make to order or a make to stock? 

WP3 
 

Q2.4.5  What kind of control strategies/dispatching rules are implemented at the 
machines (FIFO, ...)? 

 

Q2.4.6  How do the order processes / order lists look like? What data do they 
contain (type, quantity, due date, …)? 

 

Q2.4.7  In what scheme product are released in the factory?  

Q2.4.8  Products are produced individually, or they are used in a mix? If yes are 
there any constraints to consider? 

 

Q2.4.9  Is there a specific bottleneck on your shop floor?  

Q2.4.10  For a given operation, is there a single machine that can perform this 
operation, or can the processing machine be selected?   
 
Are there different types of tasks, i.e., manual (need worker), automated 
(need only robot), hybrid (need both worker and robot)? 
How is the interaction between worker and robot for hybrid 
tasks/stations). 
 

WP5 

Q2.4.11  What are the characteristics of the tasks? (duration depend on the 
resource/ duration depend on the hour/ precedence relationships...) 
 

WP5 

Q2.4.12  What granularity are you using for planning your production (a day/week/ 
a month)? 

 

Q2.4.13  How are current process plans created?   

Q2.4.14  Are there alternative process plans currently in place for short-term 
adaptation? 

 

Q2.4.15  What do the current process plans include?   

Q2.4.16  On factory level what feedback data is currently being recorded? Quality, 
costs, time, etc.? How detailed are these recorded? 

 

Q2.4.17  On factory level what change data is currently being recorded? Product 
changes? Changes to the production system (personnel, resources, etc.)?  

 

Q2.4.18  What and where do buffers exist?  

  
 

 

 

 

 

 

 



Table 5: Use of Artificial Intelligence related questions.  

 

Nr Question Related WPs 

Q2.5.1  What are your expectations regarding the use of AI in process planning? WP5,  
WP3 

Q2.5.2  What are your fears regarding the use of AI in process planning? WP5, 
WP3 

Q2.5.3  What are your expectations regarding the use of AI in 
scheduling/production planning? 
 

WP5 

Q2.5.4  What are your fears regarding the use of AI in scheduling/production 
planning? 

WP5 

  

Table 6: Simulation related questions.  

 

Nr Question Related WPs 

Q3.1  What is the role of simulation in production planning and scheduling so far?
  

WP5 

Q3.2  What is the role of simulation in process planning so far? WP5,  
WP3 

Q3.3  What kind of simulation are you doing so far (material flow, 3D simulation, 
process simulation, …)? 

WP5,  
WP3 

Q3.4  What type of simulation are you doing (multi-agents, discrete event? 
Dynamic system?) 

 

Q3.5  What is the level of detail? 
 

WP5,  
WP3 

Q3.6  What tools are you using? WP5, 
WP3 

Q3.7  If you are using simulation, how long does it take to run a simulation (e.g., 
to generate data for learning)? 

WP5 

Q3.8  What are the existing data interfaces that could be used for feeding 
/synchronizing the digital twin (e.g., SAP export)? 

WP5,  
WP3 

Q3.9  What are the inputs and outputs of the simulation today?  
Order lists, shift schedules, etc.? What are the most relevant KPIs? 

WP5 

Q3.10  What simulation experiments are executed? How are they generated? What 
are the degrees of freedom? 

WP5 

Q3.11  Who is doing the simulation today? WP5 

 

Table 7: Production planning related questions.  

 

Nr Question 

Q5.1  What tools are currently used for production planning and scheduling? 

Q5.2  What are the issues/ limitations with the current tools?  
  

Q5.3  What are the main issues/ main area of improvement regarding operation management 
in the shop floor? 
  

Q5.4  What is the expectation from a scheduling/production planning software 
(functionality/computation time/number of tasks /…)? 
  



Q5.5  What are the main sources of uncertainty on your shop floor? How does it impact 
production planning and scheduling? 

Q5.6  What is the main objective of mid-term planning horizon in your factory? 

Q5.7  What KPIs do you use for production planning and scheduling? 

Q5.8  How is production planning validated? 
How scheduling is validated? 

Q5.9  Is there any integration between the production planning and scheduling? 
How consistent between production planning and scheduling is ensured? 
 
What kind of scheduling do you use? (Global or local scheduling?) 

Q5.10  Do you make use or do you intend to make use of a domain model for production 
planning and scheduling? If so, 

1. do you follow a standard (e.g., ISA-95)? 
2. what is its format (ontology, entity-relation model, etc.)? 
3. how do you link the data 
4. do you have or do you see a need for a company specific domain model? 
5. who are the users (people or IT processes) of your domain model? 

Q5.11  What is the complexity of the information you currently need to solve a production 
planning or scheduling problem? Describe which data sources are involved (databases, 
PLM system, Excel files, etc.), and how many concepts (input parameters to the 
problem) are used. 

Q5.12  How is the current process streamlined to acquire all necessary input data for production 
planning and scheduling (data curation, aggregation, etc.)? 
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